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Abstract
Forensic applications exploit electric network frequency (ENF) as a fingerprint to
determine multimedia content authenticity, as well as the time and region of multimedia
recording. ENF is present at a nominal frequency of 50/60 Hz and its harmonics. Strong
interference due to speech content deteriorates ENF estimation accuracy. Herein, the
authors propose a non‐parametric approach for ENF estimation, which incorporates a
customised lag window design into the Blackman–Tukey spectral estimation method.
Leakage reduction is formulated as a problem of energy maximisation within the main
lobe of the spectral window. The proposed approach is compared to state‐of‐the‐art
methods for ENF estimation. Maximum correlation coefficient and minimum standard
deviation of errors are employed to measure ENF estimation accuracy. Hypothesis testing
is performed to determine whether the improvements in ENF estimation accuracy of the
proposed approach over the state‐of‐the‐art methods are statistically significant. Exper-
imental results and statistical tests indicate that the proposed approach improves ENF
estimation against many state‐of‐the‐art methods.

1 | INTRODUCTION

Multimedia content has begun to permeate many aspects of
everyday life. From publicly available content to that which is
strictly private, information diffusion has led to an over-
whelming explosion in multimedia manipulation and alteration.
Notwithstanding the indisputable multimedia forgery outbreak,
many efforts have been paid to the development of efficient
countermeasures detecting such criminal activities [1, 2].

Multimedia forensics acts crucially in recovering probative
evidences from multimedia content and constitutes a powerful
weapon in crime investigation. Multimedia authentication and
integrity validation have become challenging tasks [3]. More-
over, the popularity of cloud computing has rendered it a target
for criminals. To this end, great emphasis has been put on the
development of efficient cloud forensics tools [4, 5].

Audio and image forensics are associated with a wide range
of applications, for example, fraud detection, determination of
region where recording took place, content authentication, and
edit detection. Despite the significant progress in digital fo-
rensics, the proliferation of systems that edit audio recordings
so that alterations are not noticeable constitutes a constant

threat. Image forensics aims at providing tools for determining
whether visual content has been modified or altered. Great
emphasis has been put towards optimising their efficacy [6–9].
Copy‐move attacks tend to be very common in the field of
image forensics. Efforts have been made to develop robust
techniques for their detection [10–12]. A robust method
employing discrete cosine transform and singular value
decomposition in order to detect this kind of attacks was
presented in [13]. Robust scale and translation invariant fea-
tures were employed to detect copy‐move attacks. A block‐
based method employing Fourier–Mellin transformation for
copy‐move forgery detection was proposed in [14]. Water-
marking has been used for image tamper detection. Many
approaches based on watermarking have been proposed in
order to determine whether an image is authentic or has been
modified [15–18].

Audio forensics has been intensively studied [19–22].
Audio reverberation significantly affects the quality of an audio
recording and small differences can indicate alterations in the
original recordings. A forensic tool was presented in [23] that
models reverberation. Background noise can be employed in
order to determine the integrity of an audio recording, but
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speech leakage is evident. A novel framework was introduced
for background noise estimation [24]. Splicing detection in
audio recordings constitutes a major scenario in audio
tampering detection. Convolutional neural networks (CNNs)
are able to derive representative features of an audio recording.
A novel method was proposed in [25] for splicing detection
that employs CNN in order to derive such features using the
spectrogram of audio recordings.

A groundbreaking tool in forensics is the electric network
frequency (ENF) criterion proposed by Catalin Grigoras
[26, 27]. By employing ENF, one can determine whether an
audio recording has been modified or not, indicate when the
recording occurred, as well as where the recording was
captured. ENF is embedded in digital audio recordings and
estimation techniques aim at extracting it in the optimal way.
The ENF is present at both the nominal frequency and its
harmonics. Having extracted ENF, it is compared against a
reference database in order to determine its authenticity, the
time the recordings were captured, and to indicate whether any
alterations have occurred. Interferences and low signal‐to‐
noise ratio (SNR) conditions hinder ENF estimation. Several
approaches have been proposed to effectively extract ENF
[28–34].

The design of a lag window for non‐parametric Blackman–
Tukey (BT) spectral estimator to optimally detect ENF in
recordings from power mains as well as speech recordings is
described herein. The designed window makes a compromise
between smearing and leakage in order to detect ENF, whose
power is weaker than that of other close frequency compo-
nents of the signal (i.e. pitch or first formant of vowels). BT
adopting the designed window offers more accurate detection
in recordings from power mains and speech recordings
compared to state‐of‐the‐art methods due to the optimal
separation between the ENF and the interferences. It is worth
noting that the proposed approach, namely BT + LWD, is
tested on real‐world data sets in a compliant manner to the
setup used in the literature. Two metrics are employed to
assess ENF estimation accuracy, that is, the maximum corre-
lation coefficient (MCC) and the minimum standard deviation
of errors (mSDE) between the estimated ENF and the
reference ENF. Furthermore, hypothesis testing is performed
to assess whether the improvements in ENF estimation ac-
curacy with respect to MCC and mSDE delivered by the
proposed approach against the same metrics by state‐of‐the‐
art ones are statistically significant. It should be stressed that
an estimation problem is addressed herein. That is, ENF is
extracted using spectral estimation methods, when the refer-
ence ENF signal is available. The quality of the ENF esti-
mation is assessed through matching, as is done in the related
literature.

In summary, the main contributions described herein are as
follows:

� A Blackman–Tukey approach is proposed, which employs a
custom‐designed lag window for efficiently estimating the
power spectrum of the ENF component in recordings from
power mains and speech recordings.

� A systematic study is conducted regarding parameter se-
lection in designing the proposed lag window enabling ac-
curate ENF estimation. Proper selection of parameters
reduces leakage, affecting ENF estimation.

� Experiments are conducted on real‐world benchmark data
sets and extensive comparisons with state‐of‐the‐art
methods are made.

� Hypothesis testing asserts that the improvements in ENF
estimation accuracy with respect to MCC and mSDE be-
tween the proposed approach and those disclosed in the
literature are statistically significant.

1.1 | Related work

A non‐parametric iterative adaptive approach (IAA) for spec-
tral estimation was proposed in [28]. Furthermore, a novel
method for frequency estimation based on dynamic pro-
gramming, seeking the minimum cost path among per‐frame
frequencies was introduced also in [28]. Another approach
was proposed employing the maximum‐likelihood estimator
(MLE) for multi‐tone and single‐tone signals [29]. In particular,
the Cramer–Rao bound was used to estimate the variance
of the ENF estimator. ENF is present at multiple harmonics of
the nominal frequency. A method weighting ENF with the
local SNR of each harmonic has been described [30]. An ENF
estimation algorithm based on discrete Fourier transform
(DFT) was proposed in [31]. There, a binary approach was
used to seek specific spectral lines instead of the entire fre-
quency band. Interference in speech signals hinders ENF
estimation. To cope with that problem, robust principal
component analysis was employed for noise reduction and
weighted linear prediction for ENF estimation was introduced
in [35]. Fine tuning of signal filtering and parametrisation for
ENF estimation in recordings from power mains and speech
recordings can increase ENF estimation accuracy. In this
context, a systematic study of various techniques in combina-
tion with proper parametrisation was conducted in [36]. An
ENF estimation method in audio recordings employing fre-
quency demodulation was proposed in [37]. Different noise
conditions were established in order to test different methods.
A variety of parametric and non‐parametric frequency esti-
mation methods were employed for high‐precision ENF esti-
mation [38]. A method based on instantaneous frequency
estimation using the Hilbert transform was proposed in [39].
Time requirements and estimation accuracy crucially affect
ENF real‐world applications. Window selection can signifi-
cantly improve accuracy without affecting time requirements at
all. A novel accurate approach employing a fast Capon‐based
spectral estimator after applying a temporal Parzen window
was proposed in [40]. In most cases, the ENF signal in audio
recordings suffers from strong interferences. Filtering may
enhance the ENF signal in such cases. A filtering algorithm
was proposed in [41], which employs a kernel function to
create a time–frequency representation facilitating ENF esti-
mation. The existence of reference ENF is of high importance
in multimedia authentication tasks. A method for creating a
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reliable ENF database, employing multiple frequency sensors,
was detailed in [42]. An automated general scheme for ENF
estimation was proposed in [34].

Machine learning algorithms can indicate the region where
the recordings were captured [43]. A multi‐label machine
learning approach exploiting various ENF signal features to
identify the region‐of‐recordings was examined [44]. CNNs
can be exploited in order to learn features emerging from ENF
audio recordings. A CNN‐based system using spectrograms
for audio recapture detection was proposed in [45].

ENF estimation accuracy in audio recordings is intuitively
based on several stochastic and deterministic factors. The first
comprehensive study on the nature of factors affecting ENF
capture was conducted in [46]. Malicious attacks in power grids
can be prevented when the future ENF is known. Two algo-
rithms were proposed, employing correlation kernel regression
and autoregressive moving average for ENF forecasting [47].

For completeness, tamper detection is discussed. ENF
variations can be exploited to facilitate edit detection in
multimedia recordings, as proposed in [48]. Phase disconti-
nuities are created due to insertions and deletions. Phase
change analysis via high‐precision Fourier analysis was adopted
to justify the authenticity of multimedia recordings [49]. A
method employing an estimation of signal parameters with
rotational invariant techniques (ESPRIT) and exploiting kur-
tosis for detecting abnormalities in ENF variations was sug-
gested [50]. Time is critical in detecting multimedia alterations.
A support vector machine (SVM)‐based framework for auto-
matic detection of such alterations based on the kurtosis of
ENF disturbances was introduced [51]. Features of ENF signal
were extracted and utilised for digital audio authentication. An
SVM‐based framework for automatic tamper detection with
feature fusion was proposed in order to overcome difficulties
in visual tamper inspection [52]. Finding edited areas consti-
tutes a significant issue in digital forgery detection. A method
based on the maximum offset in cross correlation between the
estimated ENF and the reference one for edit detection was
introduced in [53]. An algorithm based on inter‐frame video
forgery detection for frame deletion, duplication, and insertion
has been proposed [54]. Timestamp verification and tamper
detection were integrated within an audio verification system
[55]. A measurement method was utilised based on absolute
errors between the extracted ENF and the reference signal
called Absolute‐Error‐Maps. ENF can be exploited as a
fingerprint for audio and video synchronisation applications by
aligning the embedded ENF signals. A scheme for multimedia
synchronisation based on ENF was proposed in [56].

1.2 | Outline

Section 2 details ENF fundamentals, discusses ENF estima-
tion, and describes the data sets employed in the experiments.
Window design is analysed in Section 3. The experiments
conducted to assess the proposed approach are discussed in
Section 4, and the conclusions are drawn in Section 5. Nota-
tion and abbreviations are summarised in Table 1.

2 | ENF FUNDAMENTALS

2.1 | The ENF criterion

The instantaneous differences between the demanded and
produced power generate stochastic fluctuations around the
nominal frequency of ENF, which is at 50 Hz in Europe and
60 Hz in the United States [26]. These fluctuations are caused
by the continuous alternations in rotational speed of energy
generators in power plants. ENF can be recorded with speci-
alised sensors called frequency disturbance recorders (FDRs),
providing accurate measurements up to ± 5 � 10−4 Hz [28].
The most significant properties of the ENF signal are the
following:

� ENF signal fluctuates in a random way around its nominal
value.

� Identical ENF fluctuations are present within the same
network.

TABLE 1 Notation and abbreviations

r Autocorrelation function

BT Blackman–Tukey

ϕ
ˆ

BT
Blackman–Tukey spectral estimator

DTFT Discrete‐time Fourier transform

ENF Electric network frequency

Efg Expectation operator

C Filter order

L Frame length

FDR Frequency disturbance recorder

Δf Frequency resolution

G Ground truth data set

W Lag window

LWD Lag window design

MCC Maximum correlation coefficient

mSDE Minimum standard deviation of errors

N Number of data samples

K Number of frames

PSD Power spectral density

QI Quadratic interpolation

Fs Sampling frequency

R Set of real numbers

STFT Short‐time Fourier transform

SNR Signal‐to‐noise ratio

S Time shift

A Vector of DTFT
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� Besides the nominal frequency, higher harmonics contain,
also, the ENF signal [57].

The ENF criterion was introduced by Catalin Grigoras
[26, 27] for determining the authenticity of digital recordings.
Accurate methods should be developed in order to isolate and
extract the embedded ENF traces and determine the integrity
of multimedia content, the time of the recordings, as well as
the region where the recordings were captured. Having
extracted the ENF signal, a comparison against a reference
ENF database should be made.

In Europe, ENF is defined as f = [50 ±ΔfE] Hz, where ΔfE
denotes the ENF fluctuations around the nominal frequency
[26]. Based on ENF fluctuations ΔfE, there are three different
conditions, indicating the proper function of network opera-
tion [58]:

� If ΔfE ≤ 20 mHz, the network is operating properly.
� If 20 mHz < ΔfE ≤ 200 mHz, ENF fluctuations exceed

normal limits, but there is no danger for network operation.
� If ΔfE > 200 mHz, a major risk in the electric network

incurs.

Many factors should be taken into consideration to effi-
ciently estimate ENF. Depending on the nature and proper-
ties of the ENF signal, three main categories of ENF
estimation methods can be established based on the analysis
domain [27]:

� Time/frequency: A visual comparison is made between the
spectrogram and the reference signal. Usually, it is employed
for short‐time recordings.

� Frequency: The periodogram is computed and the fre-
quency associated with its maximum magnitude (i.e. spectral
peak) is estimated over short time segments. The corre-
sponding frequency is compared against the reference ENF
signal. This approach exploits various spectral estimation
methods. A sharp bandpass zero‐phase FIR filter should be
applied on the raw signal, prior to spectral estimation.

� Time: Having applied a sharp bandpass zero‐phase FIR
filter to the raw signal, zero‐crossing measurements around
the frequency of interest (i.e. fundamental frequency or its
harmonics) are conducted.

2.2 | Data set description and ENF
estimation procedure

The presence of an ENF signal can be significantly affected by
the environment, where the recordings are captured. Further-
more, an ENF estimation approach may be more efficient
when tested on a specific recording environment. To this end,
ENF estimation approaches must be tested on data sets based
on various conditions and SNRs. Here, two benchmark data
sets (www.sal.ufl.edu/download.html) provided by the Uni-
versity of Florida are employed in order to evaluate the pro-
posed approach. These data sets consist of real‐valued signals

and were first discussed in [28] and have been employed also in
[29, 35, 36, 40].

The first data set (Data 1) was recorded by connecting an
electric outlet via a voltage divider directly to the internal sound
card of a desktop computer. This is a high SNR data set, which
indicates a strong signal. The second data set (Data 2) comprises
speech recordings with low SNR, which indicates strong inter-
ference. This data setwas captured by the internalmicrophone of
a laptop computer. The original data sets were sampled at
44.1 kHz using 16 bits/sample. The initial recordings were
downsampled at 441 Hz, using proper anti‐aliasing filtering.
Thus, apart from the fundamental frequency at 60 Hz, higher
harmonics can be exploited for ENF estimation. Identical ENF
signals should be contained in both data sets, since they were
captured at the same time within the same interconnected
network. Moreover, a reference ground truth data set containing
the actual ENF signal was recorded by an FDR in order to be
compared against the estimated signals from Data 1 and Data 2.

The first step in ENF estimation is bandpass filtering of
the raw signal around the frequencies of interest. Since ENF is
present at the fundamental frequency and its harmonics, the
same procedure was performed in each case. During filtering,
proper selection of both bandpass edges and filter order can
significantly boost ENF estimation accuracy, as shown in [36].
Regarding Data 1, the first, second and third harmonics were
employed in order for the experiments to be consistent with
the literature. Around the first harmonic, a sharp zero‐phase
FIR filter with bandpass edges set at 59.9 and 60.1 Hz and
filter order 1501, was applied. The bandpass edges for the
second harmonic were set at 119.98 and 120.02 Hz, main-
taining the same filter order as for the first harmonic. The third
harmonic bandpass edges were set at 179.9 and 180.1 Hz. The
filter order was decreased to 1001. In all cases, a Hamming
window with length equal to filter order was employed.
Regarding Data 2, the second harmonic was exploited only in
the experiments, as done in the literature, since the other
harmonics suffered from extremely low SNR. A sharp zero‐
phase FIR filter was applied around the second harmonic of
the speech recordings with bandpass edges set at 119.9 and
120.1 Hz. The filter order was set at 4801. It is worth
mentioning that selection of filter order affects critically ENF
estimation accuracy. A different filter order needs to be defined
at each harmonic to obtain the best results. As the filter order
was increased, the corresponding transition width was reduced,
yielding more accurate results. As a matter of fact, for the low
SNR Data 2, the filter order was set at 4801, while for the high
SNR Data 1, the filter order was set at 1001. Afterwards, the
signal was split into V overlapping frames. Each frame of size
L was shifted by S s from its immediate predecessor frame and
was multiplied by an L‐size temporal window. Here, the best
results for each harmonic in Data 1 and Data 2 were derived
employing an L‐size Parzen window [59, 60] and an L‐size
rectangular window, respectively. Frame lengths for Data 1 and
Data 2 are indicated in Table 2. The choice of temporal win-
dow is of crucial importance in ENF estimation. In [40],
extensive experiments were conducted in order to determine
the best window choice. Next, the power spectrum is estimated
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for each frame and an approximate frequency ωqmax associated
with the maximum power spectrum magnitude is extracted. In
order to derive a more precise frequency estimation, a
quadratic interpolation is employed. Thus, a quadratic model is
fit to the logarithm of the estimated power spectrum [28, 61].

3 | METHODS

3.1 | Blackman–Tukey

Let yN ¼ yðtÞ;…; yðt þ N − 1Þ½ �
⊤ be the j‐th data segment

containing the raw samples after bandpass filtering and (⋅)⊤
denote transposition. The autocorrelation between real‐valued
y(t) and y(t − n) is defined as: rðnÞ ¼ E yðtÞyðt − nÞf g, where
E denotes the expectation operator.

The standard biased estimate of r(n) is given by [62]:

brðnÞ ¼
1
N

XN

t¼nþ1
yðtÞyðt − nÞ; 0 ≤ n ≤ N − 1 ð1Þ

For negative lags, brð−nÞ ¼ br(n). Classic periodogram‐
based methods suffer from high variability due to the accu-
mulation of estimation errors. The Blackman–Tukey method
yields a refined periodogram [62]:

bϕBT ðωÞ ¼
XM−1

ζ¼−ðM−1Þ

wðζÞbrðζÞ e−iω ζ ð2Þ

where w(ζ) is an even lag‐window function. Here, M is equal to
the number of samples N. For each data segment, N = L F,
where Fs is the sampling frequency. For increased resolution,
dense frequency samples are employed as ωξ ¼

2π
Ξ ξ, ξ = 0,

1, …, Ξ − 1, where Ξ = 4N = 4LFs.
Proper selection of the lag window may lead to an

improvement of ENF estimation accuracy. Depending on the
nature of the application, the best window choice will yield the
desirable results. For each frame, the power spectral density
(PSD) (2) attains a maximum at ξ ∈ ½0; Ξ2 − 1� or f ξ ¼

ωξmax
2π Fs.

The computational complexity of the Blackman–Tukey spec-
tral estimator is about Ξ 1

2log2ðΞÞ þ 2log2ð2ΞÞ
� �

[62], which is
not prohibiting for large data sets.

3.2 | Lag window design

Taking into account the noisy nature of ENF signal, a lag
window is designed, coined as LWD, in order to reduce

interference that occurs in ENF signals and increases the
ENF estimation accuracy. The lag window will be used in
the BT spectral estimator. Leakage reduction is the
main objective of lag window design. The trade‐off between
leakage and smearing should be taken into consideration for
the selection of window shape. In ENF applications,
especially when it comes to speech recordings, strong
interference may mask the ENF signal through leakage.
To this end, the design parameter θ employed herein,
compromises smearing for reducing leakage as much as
possible.

Let a discrete impulse response d¼ dð0Þ;…; dðM − 1Þ½ �
⊤

and

aðωÞ ¼ 1; e−iω;…; e−iðM−1Þω
h i⊤

ð3Þ

be the vector of discrete‐time Fourier transform (DTFT).
DTFT of d can be written as

DðωÞ ¼ d�aðωÞ ð4Þ

where (⋅)* stands for the Hermitian transposition of complex‐
valued vectors, following the notation in [62]. The spectral
window is derived as [62]

W ðωÞ ¼ jDðωÞj2 ð5Þ

where D(ω) is the frequency response of any window.
The corresponding positive semi‐definite lag window is

given by the auto‐correlation of d, that is, for − (M − 1)
≤ ζ ≤ (M − 1),

wðζÞ ¼
XM−1

k¼0

dðkÞd�ðk − ζÞ ð6Þ

where * for scalars stands for conjugation.
Let W(ω) be the frequency response of the window

function given by Equation (6). The following maximisation
problem should be solved in order to maximise the relative
energy in the main lobe of window W(ω) [62]:

max
d

∫ θπ
−θπW ðωÞ dω

∫ π
−πW ðωÞ dω

( )

: ð7Þ

For accurate ENF estimation, the choice of the window
design parameter θ should provide the best trade‐off be-
tween leakage and spectral resolution. By increasing θ,
leakages will be mitigated at the expense of reduced spec-
tral resolution. Here, θ = 3.5/M and θ = 2.1/M are
employed for Data 1 and Data 2, respectively. Taking into
account that

TABLE 2 Frame parameters (s)

Parameters Data 1 Data 2

Time shift, S 1 1

Frame length, L 20 33
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1
2π∫ θπ

−θπjDðωÞj
2 dω

1
2π∫ π

−πjDðωÞj
2 dω

¼
d� 1

2π∫ θπ
−θπaðωÞa

�ðωÞ dω
h i

d

d�d
ð8Þ

the maximisation problem (7) can be rewritten as the max-
imisation of Rayleigh quotient:

maxd
d�Ψd
d�d

ð9Þ

where Ψ is the Toeplitz matrix

Ψ¼
1
2π

∫ θπ
−θπaðωÞa

�ðωÞ dω¼Δ ½ψm−n� ð10Þ

with elements

ψm−n ¼
1
2π

∫ θπ
−θπe

−iðm−nÞω dω¼ θsinc½ðm − nÞθπ�: ð11Þ

In Equation (11), the sinc function is defined as sincðxÞ¼Δ sinx
x .

Thus, Ψ is a real symmetric Toeplitz matrix. Accordingly, its
eigenvectors have real entries.

The optimal lag window, which maximises the relative
energy in the main lobe of W(ω) is obtained, when d is chosen
as the principal eigenvector of Ψ [62]. Here, d is a real vector.
The best results of each harmonic with respect to MCC and
mSDE are derived employing M = 0.25LFs and M = 0.5LFs for
Data 1 and Data 2, respectively. The window function w(ζ) and
its corresponding frequency response are depicted in Figures 1
and 2, respectively.

3.3 | Quadratic interpolation

In order to calculate a more precise estimate of ENF,
quadratic interpolation (QI) is employed. Thus, a quadratic
model is fit to the logarithm of the estimated power spectrum
about ωξ max [34, 61]. QI enables high‐resolution ENF esti-
mation in combination with low time requirements. The fre-
quency sample ωξ max, which corresponds to the maximum
value of spectral magnitude is extracted as an approximate
ENF estimate for each frame. The procedure is briefly
described, as proposed in [34]. Let λα ¼ logbϕBT ðωξmaxþαÞ,
α = −1, 0, 1, for each frame:

� Select the bin of the maximum power spectrum,
λ0 ¼ logbϕBT ðωξmaxÞ.

� Select the two adjacent bins of λ0, that is,
λ−1 ¼ logbϕBT ðωξmax−1Þ and λ1 ¼ logbϕBT ðωξmaxþ1Þ.

� Calculate the quadratic peak δ, which corresponds to an
improved ENF estimation.

The improved ENF estimate is obtained as ω = ωξ max + δ,
where

δ¼
1
2

λ−1 − λ1
λ−1 − 2λ0 þ λ1

ðωξmaxþ1 − ωξmaxÞ ð12Þ

3.4 | Accuracy of ENF estimation

After ENF estimation, a matching procedure is applied in
order to objectively assess estimation accuracy. Having a
ground truth (reference) data set, two metrics, namely, the
MCC [33] and the mSDE [28, 63], are used to compare
the extracted frequencies against the ground truth ones. Using
the notation introduced in [28], let f ¼ f 1; f 2;…; f K

� �⊤ be the
estimated ENF signal at each second. Let also g ¼ g1; g2;…;

�

g
K
∼ �

⊤f orK
∼

> K be the reference ground truth ENF and g
∼
ðLÞ¼

gl; glþ1;…; glþK−1

� �⊤ be a segment of g starting at l. The
following index is determined:

lopt ¼ arg max
l

cðlÞ ð13Þ

where l = 1, 2,…;K
∼

− K þ 1 and c(l ) is the sample correlation
coefficient between f and g

∼
ðLÞ defined as:

cðlÞ ¼
f⊤g

∼
ðlÞ

fk k2kg
∼
ðlÞk2

: ð14Þ

For the second metric, mSDE, the best index is found by
minimising the squared error between f and g

∼
ðLÞ, that is,

lopt ¼ argmin
K
∼

−Kþ1

l¼1
kf − g

∼
ðlÞk22: ð15Þ

In Section 4, pairwise differences between the MCC
delivered by the proposed approach and that of state‐of‐the‐
art ENF estimations were calculated in order to assess
whether they are statistically significant. Fisher's trans-
formation was employed for this purpose. A similar procedure
was followed regarding the statistical significance of the dif-
ferences delivered by mSDE. Dynamic time warping can also
be used as an alternative for matching the extracted ENF to
the ground truth [36].

4 | RESULTS AND DISCUSSION

The approach proposed in Section 3 was applied to the two
data sets described in Section 2.2. The ENF was estimated
every second for the total duration of 30 min in each data set
employing the parameters shown in Table 2. Regarding Data 1,
the first, second, and third harmonics were used for ENF
estimation. Regarding Data 2, only the second harmonic was
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exploited, because the other two harmonics were too weak.
This was due to the strong interference present in speech re-
cordings. In order to evaluate the proposed approach, com-
parisons were made against state‐of‐the‐art methods, applied
to the same data sets using the same setup.

4.1 | Data 1

The high SNR nature of Data 1 enables accurate ENF esti-
mation for all three harmonics. For the first harmonic of
ENF, the proposed BT + LWD, which employs the designed
lag window resulted to MCC of 0.9990 outperforming the
Welch method, which resulted in an MCC of 0.9983 in [36].
There, the MCC between the ENF signal estimated by the BT
method and the ground truth ENF was measured to be
0.9924. The lag window employed in the aforementioned case
of BT estimate was the rectangular one. An MCC of 0.9900
was reported in [28] for the Time‐Recursive Iterative Adaptive

Approach with frequency tracking, that is, TRIAA (Track),
while their proposed approach TRIAA without Track, reached
0.9895. The same figure of merit was 0.9917 for the STFT
(Track) implementation [28]. The fast version of Capon esti-
mator, which combines the quality of power spectral estimate
delivered by the Capon method with low computational time
requirements, achieves an MCC of 0.9922 [40]. The proposed
BT + LWD outperformed all state‐of‐the‐art approaches
employing a value of M = 0.25LFs and θ = 3.5/M for the
designed lag window. This approach constitutes a reliable tool
for ENF estimation, because of the high accuracy and low
time requirements. Specifically, it outperforms the state‐of‐
the‐art TRIAA (Track) both in terms of correlation coeffi-
cient and computational complexity. Generally, periodogram‐
based methods perform better in the presence of high SNR.
Regarding the second harmonic, there seemed to be more
interference than with the first one. The proposed approach
BT + LWD resulted in an MCC of 0.9930. BT + LWD
outperforms TRIAA method, which resulted in an MCC of

F I GURE 1 Window function w(ζ) in the time domain for M = 0.5LFs (Data 2)
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0.9902. Fast Capon also performed well and achieved an MCC
of 0.9913. The proposed approach outperforms Welch and
BT methods, which resulted in an MCC of 0.985 for both.
The third harmonic is the most prominent. A large number of
results disclosed in the literature for ENF estimation refer to
the third harmonic, exclusively. The proposed BT + LWD
achieved an MCC of 0.9990 for M = 0.25LFs and θ = 3.5/M,
outperforming all its competitors in ENF estimation at the
third harmonic. The ML approach [29] yielded an MCC of
0.9977, while the conventional BT approach delivered an
MCC of 0.9978 in [36]. MCC was 0.9961 for the TRIAA
(Track), lagging behind STFT (Track). When employing the
linear prediction approach [35], MCC was measured at 0.9982,
while its enhanced denoising version, called linear prediction
with robust principal component analysis (RPCA), reached an
MCC of 0.9984, the top performance at the time it was
published. Furthermore, remarkable results were obtained by
fast Capon, yielding an MCC of 0.9990. The proposed
approach improved ENF estimation, outperforming its

competitors and it was established as a reliable solutions
for all harmonics. At this point, it is worth mentioning that
ENF estimation in a single harmonic is considered to be
sufficient enough in real‐world applications. Many works in
the literature estimate ENF employing one harmonic only.
Detailed results for all harmonics and approaches are shown
in Table 3.

The differences between the proposed approach and all
other methods should be assessed as to whether they are
statistically significant. To this end, hypothesis testing was
applied, employing Fisher transformation. The null hypothesis,
H0 : c1 = c2, indicates that MCCs are equal and the alternative
one, H1: c1 ≠ c2, indicates the opposite. For each pair of ap-
proaches, the associated MCCs undergo Fisher's z trans-
formation [64]:

z¼ 0:5 ln
1þ c
1 − c

: ð16Þ

F I GURE 2 Frequency response of spectral window W(ω) for M = 0.5LFs (Data 2)

KARANTAIDIS AND KOTROPOULOS - 403

 17519683, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sil2.12039 by C

ochrane G
reece, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The number of samples is K = 1800. The test statistic is
given by:

qF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K − 3
p

ðz1 − z2Þ ð17Þ

Comparisons were conducted between the proposed
approach at each harmonic and the rest of the approaches with
respect to MCC, as reported in Table 3. In all cases, qF was
calculated and found to be outside the region of acceptance for a
significance level of 5%. Consequently, there is sufficient evi-
dence to warrant the rejection of the null hypothesis at a signif-
icance level of 5%.Moreover, hypothesis testing at a significance
level of 1% was conducted. In all cases, qF was calculated and
found to be outside the region of acceptance −2.58 < qF < 2.58.
Consequently, there is sufficient evidence to warrant the rejec-
tion of the null hypothesis at a significance level of 1%, too.
Therefore, the differences between MCC are statistically signif-
icant. It is worth mentioning that the proposed approach dem-
onstrates statistically significant improvements compared to the
conventional BT method. Moreover, an L‐size Parzen window
was employed as a temporal window prior to spectral estimation,
as explained in Section 2.2.

The second metric employed is the mSDE. The empirical
findings are summarised in Table 4. A limited amount of pa-
pers employ this metric. It is worth mentioning that there are
approaches, which although they yield MCC exceeding 0.99,
their mSDE is relatively high. For this reason, experiments
employing mSDE are conducted systematically to point out the
efficacy of the approach under examination.

As stated previously, better results are obtained when the
third harmonic is used. BT + LWD mSDE at the first har-
monic was measured 0.838 ⋅ 10−3, outperforming STFT
(Track) and TRIAA (Track), which yielded mSDEs of 2.650 ⋅
10−3 and 2.919 ⋅ 10−3, respectively. Moreover, the proposed
BT + LWD outperforms BT, which resulted in an mSDE of
2.284 ⋅ 10−3. TRIAA reached an mSDE of 3.032 ⋅ 10−3, while

conventional STFT attained 2.772 ⋅ 10−3. The proposed
BT + LWD employed M = 0.25LFs and θ = 3.5/M. Regarding
the second harmonic, the proposed BT + LWD achieved an
mSDE of 1.746 � 10−3, outperforming all its competitors.
STFT (Track) yielded an mSDE value of 2.145 � 10−3, while
TRIAA (Track) resulted in 2.198 ⋅ 10−3. The results deterio-
rated when TRIAA was employed. An mSDE value of 2.822 �
10−3 was reached, lagging behind STFT, which achieved a
value of 2.774 � 10−3. BT + LWD mSDE at the third har-
monic was measured 0.832 � 10−3, outperforming TRIAA
(Track) mSDE, which was measured at 1.999 � 10−3 [28]. The
conventional STFT yielded an mSDE of 1.900 � 10−3 for the
third harmonic, while an increase was noticed at the first and
second harmonics, reaching 2.772 � 10−3 and 2.774 � 10−3,
respectively. The STFT (Track) approach reached a value of
1.851 � 10−3, which was slightly better than the conventional
one. BT reached a value of 1.218 �10−3, also lagging behind
the proposed BT + LWD. mSDE of the ML approach reached
a value of 0.760 �` 10−3. In order to determine whether the
differences between mSDE of the top‐performing approaches
and the rest of the approaches reported in Table 4 are statis-
tically significant, hypothesis testing was applied [65]. Under
the assumption that the errors are normally distributed, the
statistical test for the variances of errors was based on the F‐
distribution. The sample variances s2 of errors for each method
were calculated. The null hypothesis H0: s21 ¼ s22 indicates that
the variances of errors are equal, while the alternative hy-
pothesis indicates the opposite. For a significance level of 5%
and number of samples K = 1800, a two‐tailed test was
applied. The test statistic for each pair of approaches is [65]:

qt ¼
s21
s22
: ð18Þ

Comparisons were conducted between the top‐performing
approach at each harmonic and the rest of the approaches with
respect to the mSDE, as reported in Table 4. For all pairs of
comparisons, qt was found to be outside the region of
acceptance 0.9116 ≤ qt ≤ 1.0968. Thus, there is sufficient
evidence to warrant the rejection of the null hypothesis at a
significance level of 5%. Accordingly, the differences between
the variances of errors are statistically significant. Furthermore,

TABLE 3 Maximum correlation coefficient for various approaches
applied to Data 1

Approach 60 Hz 120 Hz 180 Hz

Linear prediction [35] − − 0.9982

Linear prediction (RPCA) [35] − − 0.9984

ML [29] − − 0.9977

Welch [36] 0.9983 0.9850 0.9983

BT [36] 0.9924 0.9850 0.9978

BT + LWD 0.9990 0.9930 0.9990

TRIAA [28] 0.9895 0.9902 0.9961

TRIAA (Track) [28] 0.9900 0.9946 0.9961

STFT [28] 0.9912 0.9911 0.9968

STFT (Track) [28] 0.9917 0.9949 0.9968

Fast Capon [40] 0.9922 0.9913 0.9990

TABLE 4 Minimum standard deviation of error for approaches
applied to Data 1

Approach 60 Hz 120 Hz 180 Hz

STFT [28] 2.772 � 10−3 2.774 � 10−3 1.900 � 10−3

STFT (Track) [28] 2.650 � 10−3 2.145 � 10−3 1.851 � 10−3

ML [29] − − 0.760 � 10−3

BT [36] 2.284 � 10−3 3.202 � 10−3 1.218 � 10−3

BT + LWD 0.838 � 10−3 1.746 � 10−3 0.832 � 10−3

TRIAA [28] 3.032 � 10−3 2.822 � 10−3 1.999 � 10−3

TRIAA (Track) [28] 2.919 � 10−3 2.198 � 10−3 1.999 � 10−3

404 - KARANTAIDIS AND KOTROPOULOS

 17519683, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sil2.12039 by C

ochrane G
reece, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



hypothesis testing at a significance level of 1% was performed.
In all cases, qt was calculated and found to be outside the re-
gion of acceptance 0.89 < qt < 1.13. Consequently, there is
sufficient evidence to warrant the rejection of the null hy-
pothesis at a significance level of 1% for all comparisons and
state that the variances of errors are statistically significant. The
proposed approach BT + LWD outperforms in terms of
mSDE the TRIAA (Track) and demonstrates statistically sig-
nificant improvements compared to the conventional BT
method. The state‐of‐the‐art methods proposed in [35] did not
provide results regarding mSDE. To conclude, BT + LWD was
found to be the top‐performing approach for ENF estimation
in the first and second harmonics and the second best
approach for ENF estimation in the third harmonic with
respect to mSDE.

4.2 | Data 2

An example of an extracted ENF signal using the conventional
BT and BT employing the proposed designed lag window, i.e.
BT + LWD, is shown in Figure 3. The reference ground truth
signal is also overlaid in Figure 3. The ENF signals are shifted
by 0.05 Hz up or down from their actual values for illustration
purposes, in Figure 3. As can be noticed, at around 700 s, the
proposed BT + LWD provides more accurate extraction of
ENF compared to the conventional BT. The same is indicated
around 1100, 1250, and 1650 s. These improvements can also
be detected by visual inspection of absolute errors between
each approach and the reference ground truth. These differ-
ences tended to zero when BT + LWD was employed, as can
be seen in Figure 4.

Regarding Data 2, only the second harmonic was exploited,
as was done in the literature, due to the fact that the other two

harmonics were too weak. Data 2 is more challenging than
Data 1, being closer to real‐world practical forensic applica-
tions. The difficulty in ENF estimation lies in the fact that the
pitch frequency for a male (135 Hz for vowel/a/) or female
voice (200 Hz for vowel/a/) in Data 2 interferes with ENF
harmonics. The variability of pitch is large both for females
and males and, thus, has a serious impact on ENF estimation
in Data 2. Specifically, the range of pitch frequencies is
approximately 120–350 Hz and 100–200 Hz for females and
males, respectively [66]. The proposed BT + LWD delivered
an MCC value of 0.9434, outperforming the recent state‐of‐
the‐art approach in ENF estimation, that is, linear prediction,
[35], which yields an MCC of 0.9366. Moreover, the proposed
approach also outperforms TRIAA, which yields an MCC
value of 0.9305. The conventional STFT, which is often
adopted in the literature, resulted in an MCC of 0.9125. The
fast implementation of the Capon method [40] yielded an
MCC of 0.9351. The ML approach [29] reached an MCC of
0.9319, outperforming the Welch method [36] that reached
0.9179. It is worth pointing out that the best performing ap-
proaches in Data 1 turn out to be fragile in Data 2. The MCC
of BT estimator was measured at 0.9179, lagging behind the
proposed BT + LWD. Linear prediction (RPCA) and TRIAA
(Track) seem to perform better than the proposed BT + LWD,
but there is a key difference that should be noted. The ap-
proaches that outperform the proposed BT + LWD include an
extra module, namely, RPCA or Track. As a result, the pro-
posed method facilitates generalisation and can be employed in
a variety of applications and spectral analysis frameworks.
Furthermore, there is a significant difference between the
proposed BT + LWD and TRIAA. The proposed BT + LWD
computational complexity is about Ξ 1

2log2ðΞÞ þ 2log2ð2ΞÞ
� �

,
while the bottleneck of the TRIAA approach lies in its
high complexity of about OðN2ΞÞ. Employing Ξ = 4N, where

F I GURE 3 Extracted ENF signal using BT and BT + LWD employing the proposed lag window to Data 2
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N is the segment length, Ξ 1
2log2ðΞÞ þ 2log2ð2ΞÞ
� �

¼ 4
N log2ðNÞ þ 6log2ðNÞ
� �

¼28N log 2N. In the same manner,
TRIAA computational complexity results to O ð4N3Þ.

In order to design an effective lag window able to provide
optimal results in terms of leakage effects, two critical factors
should be taken into consideration. Both factors affect
crucially the outcome of the spectral analysis. The first factor is
related to lag window length in samples, M, which should be
chosen carefully in order to achieve an optimal trade‐off be-
tween statistical variance and spectral resolution. The second
factor that should be taken into consideration is parameter θ.
Thus, the proper choice of θ should offer an optimal trade‐off
between the energy in the main lobe and the side lobe. There is
not any generally applicable rule of thumb. It is worth
mentioning that the design parameter θ should be larger than
1/M. Otherwise, spectral window design will deteriorate the
results and leakage reduction will be hindered. The authors
conducted a systematic study to choose the optimal values for
both parameter θ and lag window length M, as shown in
Figure 5. The curves depict the MCC for various values of the
aforementioned parameters. The optimal value of MCC for the
challenging Data 2 is obtained for θ = 2.1/M and M = 0.5LFs.
MCCs for various approaches applied to the second harmonic
of Data 2 are summarised in Table 5.

As discussed in Section 4.1, in order to assess whether MCC
differences for any pair of approaches are statistically significant,
Fisher's transformation was applied. In all cases, qF was calcu-
lated and found to be outside the region of acceptance for a
significance level of 5%. Consequently, there is sufficient evi-
dence to warrant the rejection of the null hypothesis at a sig-
nificance level of 5%. Furthermore, hypothesis testing at a
significance level of 1% was conducted. In all cases, qF was
calculated and found to be outside the region of acceptance.
Consequently, there is sufficient evidence to warrant the rejec-
tion of the null hypothesis at a significance level of 1%, too.

Accordingly, BT + LWD is ranked as the fourth best approach,
behind approaches employing an additional module, such as
TRIAA (Track), STFT (Track), and linear prediction (RPCA).
BT + LWD delivers a statistically significant difference against
linear prediction, fast Capon, ML, TRIAA, BT, and Welch.

Regarding themSDE, the proposed BT+LWDdelivered an
mSDE of 6.287� 10−3, outperforming TRIAA, which yielded a
value of 7.225� 10−3. The conventional STFTyielded a value of
7.948 � 10−3. BT spectral estimation deliver accurate results,
reaching an mSDE of 7.052 � 10−3. Moreover, the Welch
method achieved an mSDE of 7.313 � 10−3. Generally, strong
interference in this data set hinders accurate ENF estimation.
TRIAA (Track), which is based on dynamic programming,
reached anmSDE of 2.914� 10−3 and theML approach yielded
a value of 3.839 � 10−3 [29]. Moreover, STFT (Track) achieved
an mSDE value of 3.369 � 10−3. The results of a linear pre-
diction approach regarding mSDE were not disclosed in [35].
ThemSDEmeasured for various approaches applied toData 2 is
listed in Table 6.

Statistical tests were conducted to assess whether mSDE
differences for any pair of approaches are statistically signifi-
cant at significance levels of 5% and 1%. In both sets of tests,
there is sufficient evidence to warrant the rejection of the null
hypothesis at the aforementioned significance levels. Accord-
ingly, BT + LWD is ranked as the fourth best approach behind
TRIAA (Track), ML, and STFT (Track). BT + LWD delivers a
statistically significant mSDE difference against BT, TRIAA,
Welch, and STFT.

5 | CONCLUSIONS

Strong interference present in speech recordings hinders ENF
estimation. An approach based on the design of a lag window
for a BT estimator has been proposed. Such a lag window

F I GURE 4 Absolute errors between the reference ground truth and the extracted ENF for Data 2, employing (a) BT and (b) BT + LWD
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design delivers an optimal trade‐off between smearing and
leakage and guarantees a reliable ENF estimation under various
SNR conditions. The proposed approach has been tested on
real‐world data sets and has been compared to state‐of‐the‐art
ENF estimation methods. It has been demonstrated that it
outperforms many competitors, revealing its potential in ENF
estimation. Statistical tests have attested that performance
improvements are statistically significant. Testing the proposed
approach in more challenging contexts, including ENF
extraction from images and videos, could be a topic of future
research.
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