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Abstract

Electric Network Frequency (ENF) analysis provides useful forensic evidence
for multimedia authentication, such as time determination or verification of
audio and video recordings, authenticity inspection, and forgery detection.
It is based on the extraction of ENF fluctuations, which occur around the
nominal value in a random, non-periodic way, due to the differences between
demanded and produced power load. Frequency fluctuations are compared
to existing ground truth data obtained from the power grid during the same
period. In this thesis, a systematic study of refined periodogram, refined
filter-bank, and high-resolution spectral estimation methods is conducted for
ENF extraction. A comparison is carried out between these spectral esti-
mation techniques and the traditional method of Short-Time Fourier Trans-
form, as well as other methods proposed in the literature, such as Maximum-
Likelihood estimation, spectral estimation based on dynamic programming,
etc. All parameters used through the entire process and the way they in-
fluence ENF estimation are thoroughly studied. A systematic study is also
carried out in order to measure how each algorithm and raw signal filter-
ing affect the computational time. The experiments demonstrate that the
developed spectral estimation techniques provide accurate ENF extraction,
achieving a matching accuracy, measured by the correlation-coefficient be-
tween the extracted ENF and the ground truth, which exceeds 99%.
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Extevng neplAndn

H mapoloa petamtuytond) ditmhwpatixy| epyacio extovidnxe ota miaicia Tou
Mpoyedupoartoc Metantuytoxwy Ynoudwy «ITAnpogopint| xou Emxowvmviecy xou
eWwotepa tng xatetduvong «Wngplaxd Méoa xow Troloyiotiny) Nonuooivry
Tou TuAparog [IAnpogopinhc, Tou Apiototeleiou Havemotruiou Oscoahovixrg
and tov Awmhwpatovyo Aypovéuo xo Tonoypdgpo Mnyavixd I'ewpyo Kapa-
vToddn, und Ty eniBiedn Tou Kadnynth Kwvotavtivou Kotpérnoukou. Etdyog
TN¢ TapoUCOS UETATTUYLOXNAS OITAWUATIXTC Epyactag eivon 1) eE€TaoT), avdAuoT
xon aloAOYNoT ToU EAEYYOU aUIEVTIXOTNTOS TOAUUEGWY UE T1) yphon Tng Lu-
yvotnroc Hhextpiol Awtbou (SHA)(ElectricNetwork Frequency— ENF).
H YHA ot Hvopéveg Tlohteleg etvon 60 Hz, evey oty Eupann etvon 50 H 2.
Ov tée tng ouyvotnTag auThg eV etvan oTaepéc, ahhd TapoucLalouy Pixpég
OLUXUUAVOELS XATd T1) SLdpxeL Tou Ypovou. Ot uxpéc autéc amoxAioels ogeilo-
vTou 6T oTtyptabor Sopopd UETAE) TNG TPOCPORAS Amd TOUG TAUPOY0US XAl TNG
ATnome amd Toug xaTavodmTéS nAexTehc toybog. Ot Baxuudvoeg g YHA
0EV TapOUGLALOUY TEPLOBXOTNTA XAl GUVETKS OEY efvar duvatd va TpoBAepioiv.
To yeyovog autd o€ GUVOLUOUS UE TNV WOLOTNTA TOUS YA TUQUUEVOLY O TAERES
uéoa oTo (B0 Nhexteixd dixtuo, xathotoly T YHA éva anoteheopatind péco
eAEyyou audevtixdtnTog ToAupécwy. TIoANEC EpEUVES ETIXEVTPWVOVTOL APEVOS
oty anoteleopotixdteen eaywyr e X HA and tig xataypapéc ot omoleg
elvoll EVOWUATWUEYT) Xt APETEPOU, OTT) DladLxacta ToU EAEYYOU AVVEYTIXOTNTAG
ue v avumopafory tne edaydeicoc XHA xar e XHA avagopds (ypouvd
teutn). H eaywyr tne THA eivon pio dtodixacio mou amoutel yeydhn oxplBeta
Ao ATOTEAEGUATIXOTNTA, OLOTL 1) OLYVOTNTA TOAAES popég xad{oTatar dloxoho
var aviyveudel e€outiag tou Yoplfou, ewdixd ota ofuata omwiiac. H mpoavo-

pepdeioa XHA avagopds yetpiéton pe ueydhn axpieia and toug mapdyoug xa



OO ELO TEC NAEX TPV DtxTOwY. Ta Bedouéva mou yenotportoinxay tpoépe-
yovtaw and to Iavemothwo g PAdpvta xou efvon dUo ewwv. To npwto orjua
mpogpyetan and tnyv ancuidelag xataypap? e XHA péow tng xdptog fyouv go-
entol umohoyloTH Tou cuvdéetan ameudelag ye Ty mpila. Xto orua autd
napoucia g XHA etvor évtovn. To Beltepo ofjua elvan war xotorypapt, oyt
Mag amd 0 pxpdPevo Tou GoenTol UTOAOYIGTH. XTo ofjua auto 1 LHA civan

ac¥eviic xan umopel vo evtomioel uovo oy SEUTERT AQUOVIXT| TNG.

Yy epyooio mopovatdlovton xar avahlovTon exTevade: 1) 1 dtadiacio tne
TEOENECEP YIS TwV OE0OUEVWY, 1 OTola THULEL XATUAUTIXG POXO GTNV UTOTE-
Aeopatixy| e€aywyr Tou ofjuatoc e LHA xou 2) n epapuoyr uedddwy gacua-
Tehg avdhuong yia Ty e€aywyr tng THA xou yio tov €heyyo audevtindtnTag
e und e&étaon xataypaprs. O €heyyog auvdevtinotntog oyetiletal Ue TO
edv Eyel ahholwVEl TO TEWTOYEVEG TOAUUECIXG GTUd, .. ME TEooVY T Thnpo-
oplag TOU XATAYPAPNXE OF OLUPORETINES YPOVIXES OTIYUES, OTWS TEXHpETOL
and TNV avdhuor tou yvoug tne LHA, addd xou e OlapopeTinés TeEQLoyEg
ovoyetiCovtac ¢ tiwés g LHA pe tic xotaypagéc avapopds oe dLapope-
Tixd onuela Tou nhexteixol dixtlou. Emmpdoveta, naupouctdlovion AemTopE-
eWS oL ypovoL oy yeetdotnxay Yo Ty eCaywyr) g XHA, yio ta 600 elon
oMLY Tou yerowonotinxay, e apuovixrc tepl Tng omolag @uitpaploTy-
xe e Lovomepatd GIATeo To UTO UEAETH o, xadade xat Tou peYEdoug Twy
ETXAAUTTOUEVWY Topollpwy Tou yenotuorotfinxay. H Swdixaocia tng mepoe-
Te€EPYAOUS TWY TPWTOYEVWY BEDOPEVKY EEXIVA UE TNV UTOBELYHaTOAEWia TOU
apy o0 Oetyuatog ota 441 Hz, koTte vo uetwiel 1 UTOAOYIO TIXY) TOAUTAOXOTY-
TOL TV OLABLXAOLWY, XPUTOYTIS ToUpdAANho TNV amopadtnTn Thnpogopio Yol TG
apuovixéc g XHA. Y1n ouvéyewa, epappoletar éva {wvomepatéd @iltpo, OoTe
VoL THPAUELVOUY OV Ol GUYVOTNTEG Tou Elvor amopaftnTeS YOpw ard ULo apuo-
vixt), Ty, TV TeaTn appovixd) ota 60 Hz. Tho ouyxexpiuéva ot cuyvétnteg
aroxonrc Tou (wvonepatod gilteou optlovtar ota 59.95 — 60.05 Hz yio tny
Teo TN appovixt|, 119.95—120.05 H z yia tn 6eUteer xon 179.95—180.05 Hz yia
Ty Tl appovixt. Yty PiShoypapio ol teplocoTepES epyaoies neptoptlovTal
OTNV AVIAUCT, PLATEURLOUEVWY ONUATWY TER! TNV TEMTY AQUOVIXT), YEYOVOS TOU
odnyel o eogaruéves extunoeis Tic Y HA oTic mepintdoeic onudtov opthiog,

60U TaEATNROVVTAL EVTOVES TaREUBOAES xaw Vopuloc. O tpoavagepieioeg ou-



YVOTNTES anoxomis Tepl TNV Tpltn apuovixr odhynoav o xahiTtepy e€aywy
¢ LHA. "Evag axdun napdyovtag mou enneedlel onUayTixd Tny ToldTnTa ToU
eCoyOUEVOL ofUaTog %aTd TN didpxela Tng mpoemedepyaotag elvan 1 TdEN ToOU
CwvodwfBatol giltpou. Ewixdtepa yia tny mepintworn tou ofuatog omiiag 1
T8EN Tou Piktpou Sadpauatilel onuavTiXG POho, xadng ula Aaviacuévr emt-
Aoy?| umopel va odnyfoel oe xoxry eCoywyh e LHA xou xatd cuvéreia oe
hovdaouévn extiunon tng avdevuxdtnrog twy dedouévwy. o tn oyedioon
Tou Lwvodiafatol giktpou emA€ydnxe éva QIATEO TETEQUOUEVNS XPOUG TIXHS
ATOXELOMNS x YenotwoTofunxe to magdtupo Hamming. Xtn cuvEyel €-
TAEyeTHL 0 apLIUOC TV EMXAAUTTOUEVWY Tepoyiwy ota onola ywelleton To
ofua tohhamhactdlovtag ue €va oploywvio mapdiupo. H didpxea Tou mapa-
Yopou mou ypnoworotunxe etvar yia o tpwto ofua 20 sec ¥ 40 sec xou Yo
10 0eTEPO o 33 sec 1y 50 sec. Katomy, yia xdie teudyto urmohoyileton 1
TUXVOTNTA PAoUaTOS Woyvog HE pla mhndopa uedddwy, omws: o Boayuyedviog
Metaoynuotiopds Fourier (Short — Time Fourier Trans form), 1 Extiun-
on Hopopyétpwy Yuatog ye ApetdBintee we npog v Ileptotpogn Teyvinég
(Estimation of Signal Parametersvia Rotational Invariant Techniques —
ESPRIT), n yédodoc Capon, n Ta&woéunon Holhamhav Xnudtov (Multiple
Signal Classification — MUSIC), xon ry Mébodoc Méyiotne IIdavogdvetoc
(M azimum — Likelihood Estimation — MLE). Stny nopoloo epyooio JeAE-
TWVTAL, ETLONG, oL UEYODOL TPOTOTOMUEVOU TEQLODOYRAPUATOS, OTIWS oL UEDodOoL
Welch, Blackman — Tukey xa. Daniell. Kowog mapavopacsTtic o8 OAeC Tig
uedodoug etvan 1 mpoordieio vor uehetndoly xou Vo TUEOUGLAGTOUY Ol TOQJE-
TpoL ToU yenowornotinxay oc xdle uédodo. Auth 1 avdyxn mpoéxude and
TO YEYOVOS TG oTNny umdpyouca BiSAtoypapio 0EV avapEPOVIAY Ol TARGUETEOL
mou €dwav To avticToya aroteréouato o xdle uédodo. ‘Onwg €detlav Ta
CUG TNUATINS TELRAUATA TNG TUROVCUE HEAETNG, 1) AVATURAY WY Y| TOOTEWOUEVWY
uelo0wy pe Wiaitepy empAela 0TV ETAOYT TV TUPUUETEWY O0NYTGE GTNV
en{teudn xaAlTEpWY amoteheoudTey. Agol unoloyiolel 1 TuxvoTHTA Qdoua-
T0¢ WoyVog ot xdie Teudylo, eEdyovTon oL GUYYOTNTES TOU AVTICTOLYOUY OTO
UEYIOTO PETRO TNG TUXVOTNTAS PACUATOS LY 100G, XM Ol YEITOVIXES TNG. LT
OUVEYEWL, EQUPUOLETAL TETPAYWVIXY| TUPEUS0AY| UE OXOTO TNV xUAUTEPT) EXTIUT-
on ¢ LHA. Ago) yiver n e€aywyr| tng XHA o xdde tepdyto, n npoxintouca



YPOVOOELRY GUUUETEYEL OTY] Btadxacia eEAEYYou TG aulevTiXdTNTAS TOou Grua-
T0¢. Autd xadioTaton duvaté pe TN avunapafolr; Tou e€ayVévioc ouaTog
YHA xon tou ofjuatoc YHA avagopds, 6w €yet yetenidel and eidwnd dpyova
uiotng axpiBeioc. O €heyyog avdevuxdtnTog TEAYHATOTOETH WS RO 8V
xputhpta mototnTag. To mpwto xpithglo ebval 0 CUVTEAEG TG GUCYETIONG EVG
T0 OeUTEPO XEITHPLO ElVOL 1) TUTIXT, ATOXAGCT, TWY CQUAIATODY UETAEY Tou e€a-
yOévtog ofjuatog YHA xon tou avtioToryou avagopds. ‘Ooov apopa T0 Te®To
ofua, 1 abénon tou mapadpou ano 20 sec ot 40 sec Sev odnyel oe Peltinon
g oxpiBetag Twv EAEyywy. To xahiTepa ATOTEAECUATA Y10l TO GUYTEAEG TY| OU-
oy€Tiong mopouctdloval avohloVTaS To aEyix6 ofjuo Tepl THY TEMTY xot TElTN
QEUOVIXY| PE TOGOGTO TOU GTAVEL TO 99.83% vy ™ wédodo Welch. E&icou
VMRS GUVTEAEG TH CUGYETITOTG TaEOUGLALOUY Xat oL UToAoIEG uEYodoL Ye TNV
Capon vo ayyilet 10 99.77% vy tnv teitn appovixt| xou tic ueb6douc ESPRIT
xow MUSIC vo gtdvouy 10 99.79%. A&ibroyo anotehéouoto TpoxInTouY Xou
AATE TOV EREYYO UE TN YPNHOT TNG TUTIXYG amOXMoTE TV ogoiudtwy. H pédo-
do¢ Welch yio Ty mp@n xou TplTr dpuovixr Topouctdler Th WXEOTERT, TUTIXT
anOxAoT opoApdTwy, 1.069 mH z. E&icou wixpd o@dhuato napouctdlouy xot ot
urohoineg pevodor, e tny ESPRIT xaw MUSIC vo axohouwdoiv 1 uédodo
Welch pe tuma andxhor ogahudtwy 1.202mHz xa 1.208 mH z, avtioTo-
.

‘Ocov agopa 10 OEVTERO GHUA, TNV NYNTLXT| XUTAYRUPT|, 1) oxplBeta Yo OAeg
Tic ued6d0uUg We TPOC T0 GUVTEAES T cuayétione Zenepvd to 90%. O peyakite-
P0¢ GUVTEAES TN GuoyéTiong topatnpeeiton Yo Ti¢ uevdooug Capon, ESPRIT
xow MUSIC xon avépyeton oe 93.18%. H axpifBEta wg TEog To BElTEPO XPLTHPLO,
TNV TUTXT] ATOXMGOT) TV CQUAIATEY, TOLOUGHALEL TIC UXPOTERES TWES Yol TIG
uedodoug Short—Time Fourier Trans form xa Blackman—Tukey. Me tny
abénomn tou mapatipou ot 50 sec tapatneeiton adlnom TN axplBelag Tou eAEY-
you aulevTixdTnTag xon yior Ta 000 xptthpte. Onwe xow otny Tepintworn Twy
33 sec, To peyahlTtEpO ouvtEAeoTH cuoyétiong, 94.44%, nogovaidlouy ot uédo-
oot Capon, ESPRIT xou MUSIC. )¢ mpog Ty TUTxY| andxAoT TV oQah-
udtwy, ot uédodot Short —Time Fourier Trans form xou Blackman —Tukey
OtvoLY TIC UXEOTERES THUEC.

To vnoloyiouxd x6cT0g NG *de Yeddou anoTerel Evay dAAO ONUAVTIXO



TOEdYOVTA GTNV EmhoyY| Yeddoou xo mapadipou. Ot uédodol eaywyhc xa
ehéyyou audevtixdtntag e XHA oto mpdto ofua e yprion topadlpou twv
20 sec amoutoly ypévoug mou moudihouv avdhoyo Ue Tr wédodo mou ulodete-
fraw. Ov pédodol Short — Time Fourier Trans form, Blackman — Tukey xou
Daniell arartoby ypodvoug uixpdtepouc twv dsec. Ou yédodor ESPRIT xou
MUSIC Beloxovtal oe udnidtepa, ahhd amodextd entneda, nept o 76 sec divo-
vrog xahég oxplBetec. H uédodog Capon anoutel mohd yebdvo, 1395 sec, o onolog
NV xotho T8 un Tpax Ty O E@apuoyEs. ‘Iotor, oyeddy, ypdvol anartodva, GTo
avaAveTr To o TEpL TN BeUTERT) X TeiTy apuovixr. O ypdvor UTOAOYLGUOU
dtav yerowonoteltar napdiugo urxoug 40 sec Topouctdlovy avdAoYT) CUUTERL-
popd 6GOV aPopd T1) OERd XxATATAE NG TwV ueVodwY. Ailet va onueiwiel twg oe
x&e mepintworn mapatnpeiton adENcy TOU ATUTOUUEVOU YpdVou 000 €wg TEELS
gopec. Ot uédodot eaywync EHA xou ehéyyou avdevtindtnTog oto delTepo
oUd ATUUTOLY TMEQIOOOTERO YPOVO amod 0,1t 6T0 TewTo orua. Kou yia tig 800
emioyEg mopadipwy, 1 uédodog tou Welch amoutel ypdvo mou dev evdelxvuTa
yiow TpaxTixry yehom xou avépyetoaw oe 23902 sec.  Avdhoyn ypovixy| araltnom
eugpaviler xou 1 pédodog tou Capon mou avépyeton ot 2248 sec. Ov undloineg

uedooor elvar Y1 YOPES X TEUXTINWS EQPUPUOCLUES.






Chapter 1
Introduction

In modern society, a huge amount of multimedia content is present in our
everyday life in the form of audio and video recordings. However, the multi-
media content can be edited, altered and modified for various purposes. This
is the reason why a lot of frauds occur in terms of altering footage and digital
content without been noticed by the victim. As Albert Einstein said, “It has
become appallingly obvious that our technology has exceeded our humanity”.
It is in this stage where forensic analysis plays a crucial role in detecting and

tracking these vicious changes of digital content.

Multimedia forensic analysis is widely used due to the rapidly increased
volume of shared audio and video recordings. Forensics have been studied a
lot in the literature [1]. In forensic sciences, authenticating digital content
and determining the time and place of recording are critical tasks. Opposed
to the use of technological development for evil purposes, the advanced sig-
nal processing techniques allow us to detect if the digital material has been
modified or tampered after its production. For determining the integrity and
the authenticity of the digital material, few tools have been developed and
used even in litigation cases, when evidence is manipulated and its origi-
nality is under question [2]. A forensic tool, which is extensively used for
forgery detection in multimedia recordings and time-stamp authentication is
the Electric Network Frequency (ENF) criterion, which can be used in order

to determine if a recording was captured at a specific time and location [2—4].
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This method is based on extracting and matching the ENF signal to a refer-
ence ENF signal from a database in order to determine whether the digital
content is authentic or has been altered and estimate the time or place the
recording occured.

ENF is the supply frequency in power distribution networks and its nomi-
nal value is 50 Hz in Europe and 60 H z in the United States (U.S.) The major
property of the ENF signal is that its value is fluctuating in a random way
around its nominal one. These fluctuations vary between =+ 50 to 100 mH z
in U.S. [5] and they are supposed to be identical through an inter-connected
network.

In this thesis, we examine various spectral analysis methods for ENF es-
timation. All methods are applied to consecutive frames of the ENF signal
recorded from the power mains as well as an audio recording. Both sig-
nals are the ones used in [6]. The fundamental ENF and its harmonics are
estimated by tracking the maxima of the power spectrum after quadratic in-
terpolation in each frame [6]. Other methods for ENF extraction, proposed in
the literature, are tested using a variety of parameters during the extraction
process. These tests are carried out for both the ENF signal and the speech
recording, examining the peculiarities and difficulties arising from each signal
and the ways to overcome them for accurate ENF extraction. Motivated by
Professor Jian Li’s quote “Spectral estimation is an art”, here we put em-
phasis on the details of band-pass filtering of the raw signal prior to spectral
analysis and the fine tuning of the parameters involved in spectral analysis
techniques, which enable us to report more accurate results than those found
in the related literature with respect to the matching of the extracted ENF
and the ground truth one. The matching quality is measured with respect
to correlation-coefficient and standard deviation of error. Besides the extrac-
tion of fundamental frequency, ENF extraction is carried out in the higher
harmonics (e.g., the third one), which demonstrates a higher signal to noise
ratio (SNR) than the fundamental one, yielding better results, as observed
in [7].

This thesis tries to answer some major research questions about ENF

extraction. Specifically:



= Investigates the parameter tuning during the filtering process;

= Conducts a systematic study of a variety of spectral estimation meth-

ods;

= Provides the reader useful information and explanations about every

detail and parameter of each method;

= Studies the behavior of each harmonic of the ENF signal and analyzes

the peculiarities of audio signal;

= Measures the time requirements with respect to the method, the frame
length and the filtering procedure adopted for the extraction of the
ENF signal;

= States every step of the procedure in order to be a useful reference for

reproducing the experiments conducted.

1.1 Thesis outline

This thesis is structured in six chapters. In the first chapter a brief introduc-
tion to the thesis is presented in order to define the basic concepts.

The second chapter deals with the existing literature about the ENF
extraction methods and algorithms. Also, a basic theory of the ENF is
presented in order to make clear the way this signal works. Moreover, the
ENF criterion is presented as basis of all methods.

A detailed presentation of the algorithms developed in the thesis and their
mathematical backround is extensively discussed in the third chapter.

The fourth chapter analyses the data used in the thesis and the procedure
followed for ENF extraction. Techniques are also presented for matching
the extracted ENF with the reference data in order to indicate whether the
recordings have been altered or not. The setup and the parameters used in
all methods are also discussed.

The fifth chapter presents the evaluation of all experiments and discusses

the experimental results in detail.



The last chapter concludes the thesis and indicates topics of future re-

search.
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Chapter 2

Electric Network Frequency
(ENF)

2.1 Literature Overview

An introduction to ENF analysis, principles, procedures, and real world ex-
amples can be found in the seminal work of Catalin Grigoras [2-4]. The
unique property of ENF signal, acting as a fingerprint, is extensively anal-
ysed, methods for obtaining the ENF, matching the ENF with a ground truth
signal, and in-depth understanding of its behaviour are presented.

A procedure for ENF extraction, using Short-Time Fourier Transform
(STFT) followed by a quadratic interpolation, and a mean square error met-
ric for ENF matching is proposed in [8,9]. Adaptive techniques for ENF
extraction based on dynamic programming are presented in [6], where a
detailed comparison between various techniques is made for digital audio
recordings. In [5], different parametric and non-parametric methods of ENF
estimation are elaborated, addressing the problem of extracting location in-
formation from the ENF signal. A more precise and detailed study, focusing
on determining the intra-grid location of recordings, is discussed in [10].

Many studies focus on time verification of recordings using different match-
ing procedures, such as the correlation coefficient approach proposed in [11].

In [12], the ENF signal is modeled as an autoregressive process and a decor-
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relation based approach is adapted to ENF matching. A computationally
efficient form of maximum-likelihood estimation is presented in [13] via a
multitone harmonic model, where signal-to-noise ratio (SNR) is also con-
sidered in the process. Cramer-Rao bound is, also, used for error estima-
tion. The maximum-likelihood frequency estimation is given by @}t =
argmax,, [|A(wo)y||?, where A is a projection matrix. In [14], a novel ap-
proach for authenticating audio signals is proposed. Max offset for cross-
correlation between the extracted signal and the reference ENF is adopted.
Besides answering whether the digital content was edited, this method, also,
determines the location the alterations occur. In [15], ENF signal is esti-
mated by making use of multiple harmonics with a weighted summation of
spectral bands according to local SNR. The estimated spectrum can be for-
mulated as: S(f) = S°r_ wyPpi(kf), where Pp(kf) is the power spectrum
for a given time-frame and wy is the weight for the harmonic bands. The
calculation of wy, is based on the SNR.

Apart from digital audio recordings, the ENF signal can be extracted from
digital video content recorded in indoor environments with the presence of
fluorescent lighting [16,17] in order to estimate the time of recording and ver-
ify its authenticity. In [18], two ENF extraction methods for video recordings
are developed, exploiting the rolling shutter mechanism of an imaging sensor.
Different pixel positions in consecutive frames and static regions are detected

for each method, respectively in order to derive the ENF' flactuations.

2.2 ENF properties

Electric networks operate at a specific frequency, which is 50 Hz in Europe
and 60 Hz in the US. This frequency is called Electric Network Frequency
(ENF). ENF is not stable and it flactuates around its nominal value. These
flactuations occur instantly due to the differences between the produced and
consumed electrical power [2]. Every moment the need for electrical power
differs and thus the rotational speed of energy generators changes. These
unbalances cause the ENF to vary around 50 Hz and 60 H z.

ENF flactuations are non-periodic and they can not be predicted even if
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we have recorded for a long period of the signal. Although the ENF pattern
is not predictable through time, it is commonly accepted that its behaviour
is stable in the whole network, so the pattern does not change [3]. This
makes the ENF signal identical for authenticating digital content in case a
reference database of ENF signals is captured. The ENF can be formulated

at any given moment as [2]:

f=[p0+Af]Hz (2.1)

where A f is the deviation between the instantaneous frequency and its nom-
inal value. In Figure 2.1, a 40 min recording of the ENF pattern is shown.
This ENF signal was captured by a Frequency Disturbance Recorder (FDR)
in the US. ENF flactuates around its fundamental frequency of 60 H z.
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Figure 2.1: Reference ENF pattern

According to [3], operation conditions of ENF vary with respect to Af

value:

= If Af <50mH z, the flactuations are considered to be normal.
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= If50mHz < Af < 150mH z, the flactuations exceed the normal val-

ues, but no danger of corrupting the ENF' exists.

= If Af > 150mH z, the flactuations yield major disturbances and the

network proper functioning is at risk.

ENF unique properties make it a powerful tool in forensic analysis. Re-
cent advances in signal processing will enable scientists to further investigate
new ways and methods for accurately determining ENF signal. The basic

properties of the ENF signal are listed below [3]:

= ENF signal occurs in random way. No patterns exist.
= Its pattern is identical in the same network.

= Apart from the fundamental frequency, ENF also exists in its higher

harmonics [7].

2.3 The ENF criterion

The ENF criterion is a powerful tool for authenticating digital media content.
It is introduced by Catalin Grigoras [2,3,9] for determining the time and
location of digital recordings and it is based on the unique properties of the
ENF signal.

ENF flactuations leave a unique timestamp on the digital recordings.
Given the fact that these recordings are exactly the same at any point on
the electrical grid at the same time, it is clearly stated that their analysis
could provide useful information about the time of the recording and their
integrity. Traces of these deviations exist in the digital recordings, when the
recordings are captured by devices connected to the grid. Such disturbances
have to be isolated in order to be extracted in the most accurate way. After
the extraction, the ENF should be matched against a reference grid ENF
signal at the corresponding time.

Both the extraction methods and the matching algorithms are investi-

gated in the most challenging environments, where noise is present in the

14



recordings. The subsequent chapters deal with different extraction methods,
trying to provide the reader an in-depth insight of the different extraction

approaches, using state-of-the-art methods.
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Chapter 3

ENF Procedures

ENF extraction can be achieved through a variety of different paths according
to the needs and the available algorithms. Based on the properties of ENF
signal and electrical networks, three extraction methods exist, as presented

by Grigoras in [2] and [3]. These methods can be categorized as follows:

= Time/frequency domain analysis: It is based on spectrogram compu-
tation. The matching procedure is visually accomplished against the
reference signal. It is suitable for short-time recordings (usually no

longer than 10 — 15 min).

= Frequency-domain analysis: In this case, the periodogram is applied to
short-time segments of data and the local maxima of the spectrum mag-
nitude are located. The corresponding frequency of the local maximum
is the estimate of ENF. The estimated ENF is compared to the refer-
ence ENF entry of a ground truth database. This method is used after
a band-pass filter is applied to the raw data. Other spectral methods

can be applied as well.

= Time-domain analysis: It uses the zero-crossing measurements after

applying a band-pass filter around the nominal frequency.

An automated ENF extraction procedure was proposed by Cooper in

[8,9]. It is presented and discussed in detail next. The matching part of
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the extracted ENF signal against the reference one is conducted with respect
to the correlation-coefficient approach [11] or a slight modification of mean

square error, which uses the standard deviation of errors, as done in [6].

3.1 Dataset description and experimental setup

The two datasets used in [6] and the ENF ground truth associated to them
are discussed here. In particular, the first dataset was recorded by connecting
an electric outlet directly to the internal sound card of a desktop computer
with a voltage divider and the second one was a speech recording captured by
the internal microphone of a laptop computer. Both recordings were sampled
at 44.1 kH z using 16 bits per sample.

Two sets of parameters are used in this thesis, as shown in Table 3.1.
The first set of frame length L; is the same as in [6]. Afterwards, the frame
length Lo is increased in order to demonstrate its impact in accuracy and
computational complexity. A time shift of 1sec equals to 441 samples of

the raw data as long as the sampling frequency is equal to 441 Hz (after

downsampling).
Table 3.1: Frame parameters (in sec)

Data 1 Data 2

Parameters (recorded from | (speech
power mains) | recording)

Time shift, T' 1 1
Frame length, L, [6] 20 33
Frame length, Lo 40 50

3.2 ENF extraction procedure

The procedure followed for ENF extraction is proposed by Cooper in [8, 9]
and is slightly modified according to the needs of this work. The basic steps of

the procedure entail: a) downsampling the raw signal; b) band-pass filtering,
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which depends on the nominal frequency of the ENF signal; ¢) extraction pro-
cedure and corresponding algorithms; d) quadratic interpolation calculations
for accurate frequency estimation and e) matching procedure against the ref-
erence database, which contains the ground-truth ENF measurements. The
whole process is detailed not only to guarantee a self-contained treatement of
the topic investigated, but also to enable reproducibility of the experiments
conducted by the interested reader.

Firstly, the original recordings are down-sampled to a frequency that
contains the fundamental frequency and some of its higher harmonics, i.e.,
F, = 441 Hz. By doing so, the ENF frequency is preserved into the down-
sampled signal and the computational cost is significantly reduced. The ini-
tial sample decimation depends on the frequency of interest, i.e., 50 or 60 H z
and the number of harmonics to be studied. In this study, the first three
harmonics are to be studied and the nominal frequency is 60 H z.

The second step is a band-pass filtering of the signal around the nomi-
nal ENF or its harmonics. Signal filtering is of high importance and filter
parameter selection should be done very carefully. In contrast to Data 1,
speech recording (Data 2) contains many interferences and its SNR is low.
The first and the third harmonics are too weak to be estimated [6]. When
the second harmonic of Data 2 is computed, some interesting properties are
arised. They are discussed in detail. The procedure of signal filtering re-
quires two basic specifications. a) The band-pass edges and b) the filter
order. The filter order should be an odd number. In our work, as concerns
Data 1, the band-pass edges of the filter are set at 59.9 Hz and 60.1 H z for
the fundamental frequency and the filter order is 1501. The second harmonic
band-pass edges are set at 119.9 Hz and 120.1 Hz, respectively. The filter
order remains the same, i.e., 1501. The third harmonic band-pass edges are
set at 179.9 Hz and 180.1 Hz and the filter order is chosen equal to 1001.
Any changes in band-pass edges or filter order did not have any impact on
the results of matching procedure.

As mentioned before, the ENF signal apart from its nominal frequency,
can also be found in the second, third, etc. harmonics. In Figures 3.1, 3.2,
and 3.3, the Power Spectral Density (PSD) of the first three harmoncis is
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depicted, after band-pass filtering applied to Data 1. In each case, we can
attest that the filtering was correctly applied by observing the magnitude of
the PSD of the band-passed ENF signal and the PSD of the original (raw)

signal.
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Figure 3.1: PSD of the signal before and after band-pass filtering around the

first harmonic (i.e., 60 Hz).
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Figure 3.2: PSD of the signal before and after band-pass filtering around the

second harmonic (i.e., 120 Hz).
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Figure 3.3: PSD of the signal before and after band-pass filtering around the
third harmonic (i.e., 180 Hz).

In each case, a Hamming window with length equal to filter order is used
in band-pass filter design. The aforementioned band-pass filter specifications
are adopted after a wide range of experiments. Fine tuning of the filter
parameters is found to be of crucial importance. Proper parameter selection
yields accurate ENF extraction, while a slight parameter modification yields

less accurate results.

During the next step, the filtered signal is split into K overlapping frames
as shown in Figure 3.4. Each frame is obtained by applying a rectangular win-
dow of length L seconds to the filtered signal and is shifted by T" = 1 sec from
its immediate predecessor frame. Two choices for L, denoted as L; and Lo,
are indicated in Table 3.1 along with T". So, for the aforementioned frame pa-
rameters, the frame size would be N = framelength x sampling frequency,
i.e. [20,40,33,50] x 441 samples. Frames are common in short-term signal
processing due to the fact that they increase frequency resolution and im-

prove ENF' estimation.
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Figure 3.4: Overplapping windows for spectral estimation.

The next step involves spectral estimation. For each consecutive frame,

the power spectrum is estimated by various spectral analysis techniques. This
step is of high importance. Each method applied has its own advantages and
disadvantages. So, a careful choice should be done. In this thesis, a wide
range of different methods are tested in order to demonstrate the benefits of
each approach. A systematic study is conducted using a refined periodogram,

a refined filter-bank, and high-resolution spectral estimation methods. These

approaches are discussed in detail in Chapter 4.

Regarding Data 1, the band-pass filtering was crucial for proper and

accurate ENF' extraction. In Figure 3.5, the extracted ENF signal by the

Capon method for the first harmonic is shown. For illustration purposes the

estimated ENF signal is shifted by 0.05 H z.
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Figure 3.5: ENF signal of the band-pass filtered Data 1 signal around the
first harmonic. (filter order 1501, band-pass edges 59.95 Hz and 60.05 Hz).
Capon method was used for the extraction of the ENF.

The speech recording (Data 2) presented a completely different behav-
ior. This is because of the noise existing in this kind of recordings due to
the equipment used to capture them. Using the same filter order as previ-
ously, the results of ENF using the Short-Time Fourier Transform (STFT)
approach, showed a completely false diagram. For given band-pass edges at
119.95 Hz and 120.05 Hz and filter orders 1501 and 4801 respectively, it is
clear that a false choice of filter order is going to lead to false results, as

shown in Figures 3.6 and 3.7.

In Figure 3.6, the extracted ENF for audio signal (Data 2) is totally false
due to interferences that were not cut during the filtering step despite the
strict cut-off frequencies. These results arose due to the low filter order.
Second harmonic of Data 2, after band-pass filtering with filter order 1501
and band-pass edges 119.95 Hz and 120.05 Hz. The STFT was used for the
extraction of the second harmonic. The second harmonic was scaled by a

factor 2 to fall in the range of ENF.
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Figure 3.6: ENF signal of Data 2 with filter order 1501 for the second har-
monic with band-pass edges 119.95 Hz and 120.05 Hz. The STFT method
was used for the ENF extraction.
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In Figure 3.7, the extracted ENF for audio signal (Data 2) is clearly
improved and provided accurate ENF extraction results. Second harmonic
of Data 2, after band-pass filtering with filter order 4801 and band-pass
edges 119.95 Hz and 120.05 Hz. The STFT was used for the extraction of
the second harmonic. The second harmonic was scaled by a factor 2 to fall
in the range of ENF.
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Figure 3.7: ENF signal of Data 2 with filter order 4801 for the second har-
monic with band-pass edges 119.95 Hz and 120.05 Hz. The STF'T method
was used for the ENF extraction. ENF signal is shifted by 0.05 Hz for illus-
tration puproses.

In Figure 3.8, the ESPRIT method was used for ENF extraction for the
second harmonic of Data 2 using the proper filter order (i.e., 4801). The
ESPRIT method provides an ENF signal visually closer to the reference one
than the STFT in Figure 3.7. Second harmonic of Data 2, after band-pass
filtering with filter order 4801 and band-pass edges 119.95 H z and 120.05 H z.
The ESPRIT was used for the extraction of the second harmonic. The second

harmonic was scaled by a factor 2 to fall in the range of ENF.
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Figure 3.8: ENF signal of Data 2 with filter order 4801 for the second har-
monic with band-pass edges 119.95 Hz and 120.05 Hz. ESPRIT method was
used for the extraction. The ENF extracted by ESPRIT is shifted by 0.05 H z
for illustration purposes.

The fine tuning of filtering parameters is of vital significance for the ac-
curate ENF extraction. The first example (Figure 3.6) leads to a matching
accuracy of 2%, while the second one (Figure 3.7) leads to an accuracy of
92%. These results would be discussed in detail in Chapter 5.

A comparison was made, also, using the thrid harmonic of the speech
recording, which is subsequently scaled by a factor 3 to fall in the range of
the ENF. As mentioned in [6], the third harmonic is too weak to provide an
efficient estimation of the ENF. Even if the results are rather rough, we can
also point out the differences between the ENF signal extracted using a low
filter order and a high one. The order of 4801 provides a smoother curve,
whose values are closer to the real frequency values. Figures 3.9 and 3.10
demonstrate these differences. It is worth mentioning that the band-pass
edges and the extraction method are those used for the second harmonic,

previously.
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Figure 3.9: ENF signal extracted from Data 2 filtered with filter order 1501
and band-pass edges 179.95 Hz and 180.05 Hz. The third harmonic was
scaled by a factor 3 to fall within the ENF range.
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Figure 3.10: ENF signal extracted from Data 2 filtered with filter order 4801
and band-pass edges 179.95 Hz and 180.05 Hz. The third harmonic is scaled
by factor 3 to fall within the ENF range.
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3.3 Quadratic interpolation

Let ¢,(w;) be the periodogram of N = L F, samples-long rth frame, where

Wy = %’Tﬁ, ¢=0,1,..., N—1, are the frequency samples and F} is the sampling

frequency of each signal. The frequency sample wy which corresponds to

the maximum periodogram value is extracted as a first ENF estimate.

In order to obtain a more accurate estimation, a quadratic interpola-
tion (QI) is employed, which fits a quadratic model to the logarithm of the
6,8,19]. To estimate wy

mates the power spectral density of each frame and searches for its maximum

estimated power spectrum about wy one esti-

max max ?

magnitude. Power spectrum is calculated for each frame. Power spectrum
is equal to the normalized squared magnitude of the discrete-time Fourier
transform of each frame. The frame length is used for normalization. QI
offers a low computational cost and enables the extraction of the ENF signal

with high resolution. The steps of QI are briefly described next as in [9]. Let
6q = log ¢r(w€max+q)v q=-10,1:

= Select bin By = log ¢, (wy,...)

= Select the adjacent bins on either side of Sy, i.e., 51 = log ér(wmaxfl)
and B = log ¢, (we,,.+1);

= Fit a quadratic model to these three points;

= Find the interpolated value of the quadratic model, which corresponds

to quadratic peak ¢;

By using the two adjacent frequencies around wppax, @ more accurate ENF

estimate is obtained as w = wy,, + d, where

sl Pa—B

T 28, -2+ B (Wt 1 = W) (3.1)

The frequency estimated by the QI is stored as the extracted ENF value.
Hereafter, the aforementioned spectral estimation method is replaced by

other non-parametric and parametric spectral analysis methods.
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3.4 Matching procedure

Having extracted the ENF from either the recorded signal from the power
mains (Data 1) or the audio recording (Data 2), a matching procedure has
to be performed against the ground truth information in order to identify
the time the recording has been captured. Using the notation introduced
in [6], let £ = [f1, fa, ..., fx]" be the extracted ENF signal, which comprises
the ENF estimated at each second. Let also g = [g1, ¢, ..., 9z]" for K > K
be the reference ground truth ENF, which comprises the actual ENF values
monitored and kept in the records of a power corporation at various time
instants. In [8], the association is being done by minimizing the squared

error between f and g(1) = g1, 9141, - - - ,gHK,l]T, ie.,
K-K ~ 9
Ly = arganin £ — g0 32)

An alternative matching criterion, proposed in [11], is the correlation match-

ing, i.e.,

lopt = arlér_nlgmx c(l) (3.3)
=1
where ¢(l) is the sample correlation coefficient between f and g({) defined as
(1)
£l 18Dl

To measure the accuracy of ENF extraction by various algorithms, one may

o(l) = (3.4)

employ the maximum correlation coefficient ¢(l,,:) measured on either Data 1
or Data 2, respectively. Alternatively, one may employ the standard devia-
tion of the error between the true ENF and the estimated one. The former
figure of merit was found to be more accurate than the latter one [11]. A

flowchart depicting the process implemented is presented in Figure 3.11.
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Figure 3.11: Flowchart of ENF extraction procedure.
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Chapter 4

Algorithms for Spectral
Analysis

4.1 Short-time Fourier transform

The Short-Time Fourier Transform (STFT) is one of the most common al-
gorithms used in ENF extraction. STFT is based on dicrete-time Fourier
transform and is computed by means of the Fast-Fourier Transform (FFT).
It constitutes a basic and powerful tool in audio signal processing and also,
in analyzing quasi-stationary signals [20]. The initial recorded signal (time-
domain) is divided into overlapping frames multiplied by a slidding window
w(). STFT is defined [20]:

o0

X (wg, m) = Z w(n —m)x(m)e Im (4.1)

m=—00

The periodogram is calculated by squaring the magnitude of STFT. It
is a basic tool in forensics analysis. Spectrogram visually respresents the

frequency spectrum of signal as it varies within time.
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4.2 Welch method

A refined periodogram method is the Welch method [21]. In this method,
each frame is divided into overlapping segments and each segment is multi-
plied by a temporal window. Let u(t) and y;(t) denote the temporal window
and jth segment, respectively. Here, adjacent segments overlap by 1000
samples and each segment has length of M = % = % samples. The Welch
estimate of power spectral density (PSD) is given by

S
A 1 A
bul) = 5 6r(w) (4.2
j=1
where S = 7 and ¢;(w) is the windowed periodogram corresponding to y;(t),
ie.,
1| & :
n o —jwt
49 = 375 | L uOB O (4.9

with P denoting the power of the temporal window w(t). A rectangular win-
dow has been employed. The Welch method yields accurate ENF' estimation
without being affected by interferences, especially in the second harmonic of
the ENF in both datasets. In speech dataset, the segment length equals to

M = % = % samples.

4.3 Blackman-Tukey spectral estimator

The Welch estimator (4.2) can be related to the Blackman-Tukey (BT') spec-
tral estimator for suitable choices of the lag window and the autocovari-
ance estimate [21]. The tradeoff between spectral resolution and statistical
variance should be considered in order to choose the window’s length. Ac-
cordingly, a natural choice for a refined periodogram is the Blackman-Tukey

estimate given by

M—-1

Spr(w) =Y w(k)i(k)e ™" (4.4)

k=—(M—1)
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where M = % =L % for the first and third harmonic and M = N = L F,

for the second harmonic in both datasets.

4.4 Daniell method

Another non-parametric method is the Daniell method [21], which yields the

refined spectral estimate

k+J

~ 1 ~
O(we) = 577 D 9nlws) (4.5)
j=k—J
for dense frequency samples w, = %’ré, ¢ =0,1,...,N. Here, the values

J=2and N =4N = 4L F, have been used. PSD estimation using Daniell
method yields a non-negative function. It is worth noting that Blackman-

Tukey spectral estimates are not necessarily non-negative.

4.5 Capon method

The periodogram can be interpreted as a filter bank approach, which uses
a band-pass filter whose impulse response vector is given by the standard
Fourier transform vector [1,e™, ... ,e_i(N_l)w]T. The Capon method, is

another filter bank approach based on a data-dependent filter [21]:

R!

h= aWw) (4.6)
a*(w)R1a(w)
where a(w) = [1,e7, ... e7*™«]" and [-]* denotes conjugate transposition.
In (4.6), R is an estimate of the auto-covariance matrix
1 N y(t)

R=+— > : [y*(t), Y (t—m) (4.7)

t=m+1 y(t . m)



Here, m =2 and N = L F;. The Capon spectral estimate is given by:

Aoy m+ 1
Pw) = a*(w)R'a(w) (48)

In practice, the Capon method has been found to be able to resolve fine
details of a PSD, such as closely spaced peaks [21], making it a superior al-
ternative of periodogram-based methods. Accordingly, it is a suitable method

for ENF estimation.

4.6 ESPRIT

ENF estimation can be cast as an estimation of a line spectrum. Therefore,
one may choose a suitable parametric method for solving the just described
problem. Estimation of Signal Parameters by Rotational Invariant Tech-
niques (ESPRIT) is a straightforward choice, as was done in [6]. In particu-
lar, one has to choose the size m of the estimated auto-covariance matrix R
and the dimension n of the diagonal matrix D = diag(e™“*,... e~"“). Let
I,,—1 denote the identity matrix of size (m — 1) x (m — 1). The frequencies
{wk}zz1 are estimated as — arg(?y ), where {f)k}zzl are the eigenvalues of the
estimated matrix ¢ [21]:

¢ = (SiS1) ' SiS,. (4.9)
In (4.9), S; = [1,,1]0] S, Sy = [0|L,_1] S, and S is the matrix having as
columns the n principal eigenvectors of R. Here, m = 4 and n = 2. ESPRIT

provides more accurate frequency estimates than other parametric methods

for line spectra [21].

4.7 Multiple signal classification

The Multiple Signal Classification (MUSIC) algorithm is frequently used for
frequency estimation. Thus, it is a suitable method for ENF extraction [21].

The MUSIC algorithm is used for time-delay estimation and is considered to
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be a high-resolution method [22]. Its limitations exist due to the fact that
model order needs to be specified before the analysis and parameter searching
requires increased computing power. The first step for frequency computa-
tion involves the estimation of signal’s covariance matrix R. Afterwards, its

eigen-analysis resulting to the computation of its eigenvectors:

N
. 1
R=— y(t)y™ (¢ 4.10
N 0 (4.10)
The frequency estimate is given by the following equation [21]:

Pyy = 1 (4.11)
a*(w)GG*a(w)

where Py is called " pseudospectrum”, because it does not represent the true

PSD, but it reveals that sinusoidal components are present in the signal. G
denotes the matrix made from the eigenvectors {gl, R gm,n} of R and
spans the subspace of noise. The results of the MUSIC method are similar
to the ESPRIT one and led to an accurate ENF estimation.

4.8 Maximum-Likelihood estimation

The Maximum-Likelihood estimation (MLE) approach for ENF extraction is
presented in [13]. The log-likelihood function’s maximization of the vector y
with respect to wy results to the MLE of wy:

WML = argmax || P 4(wo) y]|? (4.12)

wo

where vector y contains the initial signal, and
T —laT
PA(W()) = A(WO) [A (OJ())A(O)())] A (U)O) (413)

is the projection matrix onto the subspace spanned by the column of A (wy)
with dimensions N x (2M + 1). The 1st row of A(wyp) is

[1, cos(wotr), . .., cos(woMty), sin(wott), ..., sin(woMty)].
The equation 4.12 of the MLE of wy can be rewritten as
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O = argmax y P a (wo)y (4.14)
wo

Also, the expected maximum estimation accuracy is given by the Cramer-Rao

bound on the squared estimation error, as presented in [13].

4.9 Frequency tracking algorithm

An ENF estimation method based on dynamic programming is presented
in [6]. The ENF is estimated by finding the peak locations of the spectrum
in each frame. These locations represent the estimated frequency. Dynamic
programming is used in order to define a minimum cost path. The magnitude
of this cost is calculated by the difference between peak locations in two
consecutive frames. This cost function does not allow important frequency
jumps between frames and the aforementioned path is employed for the ENF
extraction. The ENF is estimated by computing the minimum cost path
among the first and the last frame of the signal. The Bayesian Information
Criterion (BIC) is used to determine the number of peaks for each frame.
Minimizing the BIC criterion yields in the number of peaks nj;. The BIC is
formulated as [23]:

2ny 2
BIC(ny) = Mln< y — Z a(wg)a(w) > + 5(2n,)InM. (4.15)
k=1
For frame k£ = 1,..., K, the estimated peak locations which correspond

to frequencies are denoted as P, = {Pkl,PkQ, . ,quk}. The core of this
method is based on finding a path { fk}szl with peak locations f, € P and
fe—feer=minfor k=1,..., K. The set of the estimated peak (frequency)
locations, which correspond to the ENF' estimation, can be calculated by

minimizing the following [6]:

K

C = minfkepk Z(fk — fk—1)27 ]{3 = 1, ceey K (416)
k=2
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Minimizing the above equation by adopting an exhaustive search is imprac-
tical and, thus, a dynamic programming approach in recursively determining
the minimum cost path is employed. This is achieved by minimizing the cost

from a given frame j < K to the last frame denoted by J(j, f;):

K

J(j, f;) = fmeig (fo — fe)® fjeEP k=j+1,...,K. (4.17)
k k
k=j-+1

The computational complexity of dynamic programming is of O (K P2, ),
where Pmax is the number of peaks appear in the frame with the highest BIC
value. This frequency tracking algorithm based on dynamic programming

¢

will be notated as “ method’s name (tracking)” in the thesis.
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Chapter 5
Experimental Evaluation

All ENF extraction methods adopted in the thesis are tested on datasets
Data 1 and Data 2 using the two choices of frame length L, namely L; as
in [6] and Lo shown in Table 3.1. The first choice is used to allow comparisons
with the results disclosed in [6], where a novel algorithm for ENF extraction,
based on dynamic programming, is suggested. The second one is used for
studying the behavior of ENF extraction methods, when longer frames are
used. Although longer frame lengths seem to provide higher resolution, their
usage may lead to smoother signals, which suffer from the loss of valuable
information. In each case, this work suggests that proper filtering and pa-
rameter selection of spectral estimation methods can provide high quality
ENF estimation.

5.1 Data 1 results

In this section, the results of all methods adopted in this thesis regarding
Datal are presented for both frame length L; and L,. The results are
analyzed and comparisons with other works are discussed. Firstly, we proceed
by demonstrating the extracted ENF against the reference ENF signal. The
extracted ENF signal was obtained by the third harmonic scaled by a factor
3 to fall within the range of ENF. The ENF obtained by STFT is shown
in Figure 5.1. The ENF extracted by the Capon method is shown in Figure
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5.2. The ENF extracted by the Welch method is depicted in Figure 5.3, while
BT and ESPRIT methods applied to ENF extraction are demonstrated in
Figure 5.4 and Figure 5.5, respectively. It is worth mentioning that the
MUSIC method yields similar results to ESPRIT for both ENF contour and
matching accuracy. For illustration purposes all overlaid methods are shifted

by 0.05 H 2.
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Figure 5.1: Extracted ENF signal against a reference one for the STFT
applied to Data 1 for frame length parameter L;. The extracted ENF signal
is shifted by 0.05 H z for illustration purposes.
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Figure 5.2: Extracted ENF signal against a reference one for the Capon
method applied to Datal for frame length parameter L;. The extracted
ENF signal is shifted by 0.05 H z for illustration purposes.
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Figure 5.3: Extracted ENF signal against a reference one for the Welch
method applied to Datal for frame length parameter L;. The extracted
ENF signal is shifted by 0.05 H z for illustration purposes.
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Figure 5.4: FExtracted ENF signal against a reference database for the
Blackman-Tukey method applied to Data 1 for frame length parameter L;.
The extracted ENF signal is shifted by 0.05 Hz for illustration purposes.
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Figure 5.5: Extracted ENF signal against a reference database for the ES-
PRIT method applied to Datal for frame length parameter L;. The ex-
tracted ENF signal is shifted by 0.05 Hz for illustration purposes.
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For illustration purposes, the ENF signals extracted from Data 1 by vari-
ous estimation methods are overlaid in Figure 5.6, when L = L;. The ENF is
estimated from the third harmonic down-shifted to 60 Hz scaled by a factor
3. The various ENF contours are shown with increment of 0.05 Hz start-
ing from 59.95 Hz. Daniell and BT methods yield similar ENF contours to
Welch and STFT, respectively. Similarly, the MUSIC method yields similar
results to ESPRIT.
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Figure 5.6: Extracted ENF signal of all methods against reference database
for Data 1 and frame parameters L.

For Data 1 using frame length L, the accuracy between the ENF sig-
nal extracted by various spectral analysis methods and the ground truth,
measured by frequency disturbance recorders with accuracy up to about
+0.5mH z [6], is summarized in Tables 5.1 and 5.2. The maximum correla-
tion coefficient is listed in Table 5.1, while the minimum standard deviation
of error is gathered in Table 5.2. It is seen that the ENF estimated from the
first harmonic and the third one is more accurately estimated than that esti-
mated by the second harmonic. For the first and third harmonics, the Welch
and the ESPRIT methods yield the best performance with respect to both
figures of merit. MUSIC method presented almost identical results to ES-
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PRIT for all three harmonics. Although these methods seem to be the most
accurate, all algorithms performed very well and this is due to the proper
signal filtering and parameter selection. The third harmonic seems to be
the most accurate for all algorithms with respect to correlation-coefficient.
The minimum standard deviation of errors yields better accuracy in third
harmonic than the other two for all methods apart from ESPRIT and MU-
SIC. The second harmonic is the weaker of the three, but it still provides
acceptable ENF estimation. The errors between the extracted ENF and the

reference one are at the order of a few mHz.

Table 5.1: Maximum correlation coefficient for various algorithms (Data 1,

Ly)

Algorithm 60Hz | 120Hz | 180 Hz
STFT 0.9886 | 0.985 | 0.9957
Welch 0.9983 | 0.985 | 0.9983
Blackman-Tukey | 0.9924 | 0.985 0.9978
Daniell 0.9906 | 0.985 | 0.9977
Capon 0.9952 | 0.9913 | 0.9977
ESPRIT 0.9979 | 0.9913 | 0.9979
MUSIC 0.9979 | 0.9913 | 0.9979

Table 5.2: Minimum standard deviation of error for various algorithms
(Data 1, Ll)

Algorithm 60 Hz 120 H= 180 Hz

STFT 2.806 - 1072 | 3.202- 1072 | 1.303 - 1073
Welch 1.069 - 1073 | 3.202-107% | 1.069 - 103
Blackman-Tukey | 2.284 - 1072 | 3.202- 107 | 1.218 - 1073
Daniell 2.542-107% | 3.41 -107% | 1.245-1073
Capon 1.806-107% | 2.9 -1073 | 1.237-1073
ESPRIT 1.198 - 1073 | 2.901-107% | 1.202- 1073
MUSIC 1.198 -1073 | 2.901-107% | 1.208 - 1073

Compared to [6], the accuracy of the ESPRIT method applied to Data 1
is increased from 0.947 to 0.9913 for the second harmonic, which is the weak-
est. Similarly, the standard deviation of error is decreased from 6.57 - 1073
to 2.901 - 1073, Also, the most effective method presented in [6] was the

46



STEFT (Tracking), which uses a discrete dynamic programming approach,
but still it is not so accurate as the methods presented in the thesis. In Table
5.3 and Table 5.4 the results for STFT (Tracking) are presented for both
correlation-coefficient and minimum standard deviation of error. Comparing
these findings to the results presented in Tables 5.1 and 5.2 for the third
harmonic, we see that the methods developed here, which employ proper
filtering and parameter selection, yield a better ENF estimation than that
in [6].

Table 5.3: Correlation-Coefficient for STFT (Tracking) (Data 1, L)

Algorithm 180 Hz
STFT (Tracking) | 99.68

Table 5.4: Minimum standard deviation of error for STFT (Tracking)
(Data 1, Ly)

Algorithm 180 Hz
STFT (Tracking) | 1.851-107%

Another method implemented is the MLE used in [13]. In our work, sim-
ilar results were found for the MLE algorithm with respect to both standard
deviation of errors and correlation-coefficient between the ENF' estimated by
MLE and reference one, as shown in Table 5.5 and Table 5.6. The standard
deviation of errors with respect to reference database for Data 1 was found
0.76 mH z for frame length duration 7' = 3 sec. This estimation came from
the first harmonic of Data 1, since the two other harmonics (i.e., 2, 3) did not
provide better results neither remarkable improvements.. The frame length
used in the thesis for MLE is T' = 1 sec.
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Table 5.5: Correlation-coefficient between the ENF estimated by the MLE
and the reference one (Data 1)

Algorithm 60 Hz
Maximum-likelihood estimation | 99.91

Table 5.6: Minimum standard deviation of error between ENF estimated by
MLE and the reference one (Data 1)

Algorithm 60 Hz
Maximum-likelihood estimation | 0.00078

Regarding the implementation of the MLE algorithm is worth noting that
increasing the frame length causes a significant drop in accuracy both with
respect to correlation-coefficient and standard deviation of error. This is

depicted in Figure 5.7 and Figure 5.8. Both figures show the accuracy as the
frame length increases till 100 sec.

Correlation Coefficient (%)

Figure 5.7: Correlation-coefficient for the MLE algorithm versus frame
length.

48



0.012 T T T T T

0.01 —

0.008 —

Frequencies (Hz)
=
f=]
5
T

o

=3

2
T

0.002 —

min value = 0.00078 Hz

corcoeff = 99.9%
"

frame length = 1s

] 10 20 30 40 50 80 70 80 90 100
Frame length (s)

Figure 5.8: Standard deviation of errors for the MLE algorithm versus frame
length.

By employing the frame length Lo, which is longer than L;, one expects
an increased SNR and more fine spectral resolution at the cost of lower time
resolution. This is evident in Tables 5.7 and 5.8 for Data 1. Frame-by-frame,
ENF extraction followed by quadratic interpolation yields more accurate re-
sults using STFT with respect to both maximum correlation coefficient and
minimum standard deviation of error than using L;. The first harmonic of
ENF is more accurately estimated by the ESPRIT and Welch methods with
respect to both aforementioned figures of merit. It is worth noting, that all
periodogram-based methods (i.e., STFT, Welch, Daniell, BT) yield a more
accurate estimation of the ENF from the second harmonic than the Capon
and ESPRIT methods. This is attributed to the “noisy” nature of the es-
timate of auto-covariance matrix due to the weak SNR associated to this
harmonic.

Regarding to Ly parameter two kind of behaviors are noticed. The first
one includes the methods that provide better figures of merit than those
when the smaller frame length (L;) was used. Since a longer frame length
is adopted, a better resolution is achieved. The second kind of behavior in-

cludes the methods that provide worst figures of merit than those when the
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smaller frame length (L;) was used. It is worth mentioning that the longer
frame length makes the extracted signal smoother and valuable information
is lost, as shown in Figure 5.9 for the Capon method. An improvement in
the extracted ENF is obtained for the STFT method when a longer frame
length is used, as depicted in Figure 5.10. Regarding to the second harmonic
all methods except the ESPRIT, MUSIC, and Capon perform better when
the frame length L, is adopted. Using L, in the third harmonic, all meth-
ods’ accuracy drops except the Daniell method. In the latter, the accuracy

increases.

Table 5.7: Maximum correlation-coefficient for various algorithms (Data 1,
L)

Algorithm 60Hz | 120Hz | 180 Hz
STFT 0.9916 | 0.992 | 0.9964
Welch 0.9964 | 0.992 | 0.9965
Blackman-Tukey | 0.9933 | 0.992 | 0.9967
Daniell 0.9926 | 0.9915 | 0.9967
Capon 0.995 | 0.9916 | 0.9953
ESPRIT 0.9953 | 0.9916 | 0.9953
MUSIC 0.9953 | 0.9917 | 0.9953

Table 5.8: Minimum standard deviation of error for various algorithms
(Data 1, Lg)

Algorithm 60 Hz 120H~= 180 Hz

STFT 2.388-107% | 2.317-107° | 1.572-1073
Welch 1.564 - 1073 | 2.317-1073 | 1.546 - 1073
Blackman-Tukey | 2.133-1072 | 2.317-1072 | 1.508 - 1073
Daniell 2.238-1073 | 2.389-1073 | 1.151- 1073
Capon 1.851-107% | 3.007-107% | 1.809 - 103
ESPRIT 1.793-1073 | 3.007-1073 | 1.804 - 1073
MUSIC 1.793-1073 | 3.007-1073 | 1.795- 1073
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5.2 Data 2 results

In this section, the results of all ENF extraction methods applied to Data 2
are presented for both frame lengths, L; and Ly. First, we proceed by demon-
strating the extracted ENF from the second harmonic against the reference
one. The second harmonic of ENF is estimated by various spectral analysis
methods. Next, the second harmonic is scaled to 60 Hz in every case. The
ENF estimated by the STFT is shown in Figure 5.11. The ENF estimated
by the ESPRIT method is shown in Figure 5.12. The ENF estimated by
the Capon method is depicted in Figure 5.13. It is worth mentioning that
MUSIC yields similar results to ESPRIT for both ENF contour appearance
and matching accuracy. For illustration purposes multiple ENF contours are
shifted by 0.05 Hz to allow comparisons. As is demonstrated in all figures,
more interference is present in the extracted ENF signal from the speech

recording than that from Data 1.
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Figure 5.11: Extracted ENF signal against the reference one for the STF'T
method applied to Data 2 for frame length L;. The extracted signal is shifted
by 0.05 H z for illustration purposes.
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Figure 5.12: Extracted ENF signal against the reference one for the ESPRIT
method applied to Data 2 for frame length L;. The extracted signal is shifted
by 0.05 H z for illustration purposes.
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Figure 5.13: Extracted ENF signal against the reference one for the Capon
method applied to Data 2 for frame length L;. The extracted signal is shifted
by 0.05 H z for illustration purposes.
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For illustration purposes, the ENF contours estimated from the Data 2
second harmonic by various estimation methods are overlaid in Figure 5.14,
when L = L. The second harmonic is down-shifted to 60 H z and the various
ENF contours are shown with increment of 0.05 Hz. MUSIC and Welch
methods yield similar ENF contours to ESPRIT and Capon, respectively.
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Figure 5.14: Extracted ENF signal of all methods against reference database
for Data 2 and frame parameters L.

Apart from the standard deviation of errors, an interesting insight to
the differences between the extracted ENF signal and the reference one is
shown in Figure 5.15 and Figure 5.16. Absolute ENF estimation errors from

the speech signal are shown to visually demonstrate the performance of the

STFT and the ESPRIT.
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Figure 5.15: Absolute errors between the ENF estimated from Data 2 and
the reference ENF, when the STFT method with frame length L; is applied
to the band-pass filtered signal around the second harmonic.
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Figure 5.16: Absolute errors between the ENF estimated from Data 2 and the
reference ENF, when the ESPRIT method with frame length L; is applied
to the band-pass filtered signal around the second harmonic.
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An improvement in the extracted ENF signal is achieved by the ESPRIT

method when longer frame length was used, as depicted in Figure 5.17.
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Figure 5.17: Comparison of the ESPRIT method for frame lengths L; and
L, applied to Data 2.

In the speech recording, the first and third harmonics of the ENF are
too weak [6]. Accordingly, we confine ourselves to the second harmonic
(120 Hz). Tables 5.9 and 5.10 summarize the maximum correlation coef-
ficient and the minimum standard deviation of error, respectively. It is seen
that the ESPRIT, MUSIC and Capon method yield more accurate results
than the periodogram-based methods with respect to maximum correlation
coefficient. The maximum correlation coefficient for ESPRIT reported here
is 0.9318, while 0.8446 was reported in [6] for the same length L;. The same
ordering of ENF extraction methods is observed when a longer frame length
Lo is employed. Periodogram-based methods yield a maximum correlation
coefficient slightly less than the ESPRIT, MUSIC and Capon methods. How-
ever, they are ranked top with respect to the minimum standard deviation of
error. In Data 2, the application of L, frame length yields an improvement
in accuracy for all methods with respect to both correlation-coefficient and

minimum standard deviation of error.
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Table 5.9: Maximum correlation coefficient for various algorithms for Data 2
and two frame lengths L, and Lo

Algorithm 120Hz (Ly) | 120 Hz (Ls)
STFT 0.9238 0.9332
Welch 0.9179 0.9328
Blackman-Tukey 0.9238 0.9332
Daniell 0.9176 0.9311
Capon 0.9318 0.9444
ESPRIT 0.9318 0.9444
MUSIC 0.9318 0.9444

Table 5.10: Minimum standard deviation of error for various algorithms for
Data 2 and two frame lengths L; and Lo

Algorithm 120Hz (Ly) | 120 Hz (L)
STFT 7.052-1073 | 6.623 - 1073
Welch 7.313-1073 | 6.641-1073
Blackman-Tukey | 7.052-107% | 6.623-1073
Daniell 7.326-107% | 6.722-1073
Capon 8.011-1073 | 7.797-1073
ESPRIT 8.012-1073 | 7.797-1073
MUSIC 8.011-1073 | 7.797-1073

5.3 Computational requirements

The algorithm used in ENF extraction must fulfill two requirements. First
and foremost, it has to be efficient in terms of accuracy in order to achieve the
best possible matching. The second requirement concerns the computational
cost of the method adopted. This is of high importance when an algorithm
is implemented. In the thesis, besides the study concerning the evaluation of
each algorithm in terms of accurately matching the extracted ENF signal to
the reference one, a systematic study is done in order to make clear how each
algorithm and raw signal filtering affects the computational requirements. In
Table 5.11, the computational time for Data 1 when L is used, is presented.
When the frame length L, is adopted the computational time is listed in Table
5.12. In both cases, the Capon method is by far the most time consuming

with 1394.8667 sec for L, while ESPRIT and MUSIC are the next more
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time consuming methods. STFT requires the least time (about 1.5 sec). BT,
Daniell and Welch are also very fast.

Increasing frame length to Ls, the order of the most time consuming
algorithms remains the same as for L. However, all algorithms require more
time now. A visual representation of ENF estimation accuracy measured with
respect to the correlation-coefficient and computational time requirements of
all methods applied to Data 1, using frame length Lo, is shown in Figure

5.18. A logarithmic scale is used on the time axis.

Table 5.11: Computational cost of each algorithm in seconds (Data 1, L)

Algorithm 60 Hz 120 Hz 180 Hz

STFT 1.6108 1.7965 1.8208
Welch 13.0709 14.3214 13.2014
Blackman-Tukey 5.4646 5.5289 4.7036
Daniell 2.7730 3.1489 13.2014
Capon 1394.8667 | 1389.0156 | 1346.8761
ESPRIT 76.7445 76.4896 76.3824
MUSIC 76.6992 76.5861 76.7358

Table 5.12: Computational cost of each algorithm in seconds (Data 1, L)

Algorithm 60 Hz 120Hz 180 H~

STFT 2.8796 2.7099 2.7380
Welch 42.7841 43.5214 42.7939
Blackman-Tukey 8.2119 7.5159 7.7323
Daniell 5.8448 5.3647 5.3801
Capon 2752.9680 | 2807.0183 | 2770.0832
ESPRIT 157.7661 | 153.9399 | 161.4595
MUSIC 158.4205 | 154.76564 | 155.3864

For Data 2, there is a significant increase in computational time required
by the Welch algorithm, which is even bigger than that of the Capon method.
From the inspection of Table 5.13, one sees that for both L; and Lo, the Welch
method requires a huge amount of time, which makes it completely inefficient
for ENF extraction, since it requires approximately 23902 sec. This is due to
segment length employed in Welch algorithm as stated in Section 4.2. The
second most time consuming method is the Capon method, which requires

about 2248 sec. The rest of the methods seem to be more efficient in terms
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of the computational time. The STFT needs the least time (about 2.96 sec)
along with the Daniell and BT methods. When the frame length L, is used,

the time is slightly increased in all cases, as expected. Except the Welch and

the Capon methods, the rest fulfill the requirements for fast and accurate

ENF extraction.

Table 5.13: Computational cost of each algorithm in seconds (Data 2, L,

and Lo)
Algorithm 120 Hz (L) | 120 Hz (L)
STFT 2.9648 3.2584
Welch 23902.8156 | 27320.0221
Blackman-Tukey 6.4617 9.3799
Daniell 4.8143 7.0967
Capon 2248.7507 3424.2689
ESPRIT 126.2766 208.2021
MUSIC 125.1108 198.7045
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Figure 5.18: Correlation-coefficient for the first harmonic ENF extraction
versus computational requirements of the various mathods applied to Data 1

using frame length L,.
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Chapter 6
Conclusion

Digital audio authentication requires high accuracy in ENF extraction to en-
sure exact time/location estimation. Several frequency estimation methods
have been tested on a frame-based approach by dividing the entire signal into
consecutive overlapping frames. Two datasets have been employed, namely,
a signal recorded from the power mains and a speech recording. In the former
dataset, a high SNR is present and accurate ENF estimation can be achieved
from all the three harmonics. In the latter dataset, strong interferences are
present. It has been demonstrated by experiments that if the raw datasets are
filtered by a properly designed band-pass filter, then either non-parametric
or parametric techniques for spectral estimation provide an accurate estima-
tion of the ENF. The aforementioned interferences introduce challenges to
ENF estimation. Exploiting their sparse nature in the formulation of ENF
estimation could be a topic of future research. By applying longer frames it
has been shown that one can reduce the interferences and achieve an accurate
ENF. This longer frame setup fits better the speech dataset, where strong
interferences are known to exist. The computational time requirements are
also studied for both datasets, because computational speed is of high impor-
tance as well. As expected, when longer frames are employed, computational
time increases. This is also noticed, when a higher filter order is used for
band-pass filtering the raw signal. When computational time is considered,
the STFT and Daniell are found to be the fastest methods, offering both
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accuracy and low computational time. From the point of view of compu-
tational time, the Welch and the Capon methods are found to be the most

time consuming ones.
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