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Abstract

Electric Network Frequency (ENF) analysis provides useful forensic evidence

for multimedia authentication, such as time determination or verification of

audio and video recordings, authenticity inspection, and forgery detection.

It is based on the extraction of ENF fluctuations, which occur around the

nominal value in a random, non-periodic way, due to the differences between

demanded and produced power load. Frequency fluctuations are compared

to existing ground truth data obtained from the power grid during the same

period. In this thesis, a systematic study of refined periodogram, refined

filter-bank, and high-resolution spectral estimation methods is conducted for

ENF extraction. A comparison is carried out between these spectral esti-

mation techniques and the traditional method of Short-Time Fourier Trans-

form, as well as other methods proposed in the literature, such as Maximum-

Likelihood estimation, spectral estimation based on dynamic programming,

etc. All parameters used through the entire process and the way they in-

fluence ENF estimation are thoroughly studied. A systematic study is also

carried out in order to measure how each algorithm and raw signal filter-

ing affect the computational time. The experiments demonstrate that the

developed spectral estimation techniques provide accurate ENF extraction,

achieving a matching accuracy, measured by the correlation-coefficient be-

tween the extracted ENF and the ground truth, which exceeds 99%.
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Ekten c perÐlhyh

H paroÔsa metaptuqiak  diplwmatik  ergasÐa ekpon jhke sta plaÐsia tou

Progr�mmatoc Metaptuqiak¸n Spoud¸n {Plhroforik  kai EpikoinwnÐec} kai

eidikìtera thc kateÔjunshc {Yhfiak� Mèsa kai Upologistik  NohmosÔnh}

tou Tm matoc Plhroforik c, tou AristoteleÐou PanepisthmÐou JessalonÐkhc

apì ton DiplwmatoÔqo Agronìmo kai Topogr�fo Mhqanikì Ge¸rgio Kara-

ntaòdh, upì thn epÐbleyh tou Kajhght  KwnstantÐnou Kotrìpoulou. Stìqoc

thc paroÔsac metaptuqiak c diplwmatik c ergasÐac eÐnai h exètash, an�lush

kai axiolìghsh tou elègqou aujentikìthtac polumèswn me th qr sh thc Su-

qnìthtac HlektrikoÔ DiktÔou (SHD)(ElectricNetworkFrequency−ENF ).

H SHD stic Hnwmènec PoliteÐec eÐnai 60Hz, en¸ sthn Eur¸ph eÐnai 50Hz.

Oi timèc thc suqnìthtac aut c den eÐnai stajerèc, all� parousi�zoun mikrèc

diakum�nseic kat� th di�rkeia tou qrìnou. Oi mikrèc autèc apoklÐseic ofeÐlo-

ntai sth stigmiaÐa diafor� metaxÔ thc prosfor�c apì touc parìqouc kai thc

z thshc apì touc katanalwtèc hlektrik c isqÔoc. Oi diakum�nseic thc SHD

den parousi�zoun periodikìthta kai sunep¸c den eÐnai dunatì na problefjoÔn.

To gegonìc autì se sunduasmì me thn idiìtht� touc na paramènoun stajerèc

mèsa sto Ðdio hlektrikì dÐktuo, kajistoÔn th SHD èna apotelesmatikì mèso

elègqou aujentikìthtac polumèswn. Pollèc èreunec epikentr¸nontai afenìc

sthn apotelesmatikìterh exagwg  thc SHD apì tic katagrafèc stic opoÐec

eÐnai enswmatwmènh kai afetèrou, sth diadikasÐa tou elègqou aujentikìthtac

me thn antiparabol  thc exaqjeÐsac SHD kai thc SHD anafor�c (ground

truth). H exagwg  thc SHD eÐnai mÐa diadikasÐa pou apaiteÐ meg�lh akrÐbeia

kai apotelesmatikìthta, diìti h suqnìthta pollèc forèc kajÐstatai dÔskolo

na aniqneujeÐ exaitÐac tou jorÔbou, eidik� sta s mata omilÐac. H proana-

ferjeÐsa SHD anafor�c metriètai me meg�lh akrÐbeia apì touc parìqouc kai
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diaqeiristèc hlektrik¸n diktÔwn. Ta dedomèna pou qrhsimopoi jhkan proèr-

qontai apì to Panepist mio thc Flìrinta kai eÐnai dÔo eid¸n. To pr¸to s ma

proèrqetai apì thn apeujeÐac katagraf  thc SHD mèsw thc k�rtac  qou fo-

rhtoÔ upologist  pou sundèetai apeujeÐac me thn prÐza. Sto s ma autì h

parousÐa thc SHD eÐnai èntonh. To deÔtero s ma eÐnai mia katagraf  omi-

lÐac apì to mikrìfwno tou forhtoÔ upologist . Sto s ma autì h SHD eÐnai

asjen c kai mporeÐ na entopisjeÐ mìno sth deÔterh armonik  thc.

Sthn ergasÐa parousi�zontai kai analÔontai ekten¸c: 1) h diadikasÐa thc

proepexergasÐac twn dedomènwn, h opoÐa paÐzei katalutikì rìlo sthn apote-

lesmatik  exagwg  tou s matoc thc SHD kai 2) h efarmog  mejìdwn fasma-

tik c an�lushc gia thn exagwg  thc SHD kai gia ton èlegqo aujentikìthtac

thc upì exètash katagraf c. O èlegqoc aujentikìthtac sqetÐzetai me to

e�n èqei alloiwjeÐ to prwtogenèc polumesikì s ma, l.q. me prosj kh plhro-

forÐac pou katagr�fhke se diaforetikèc qronikèc stigmèc, ìpwc tekmaÐretai

apì thn an�lush tou Ðqnouc thc SHD, all� kai se diaforetikèc perioqèc

susqetÐzontac tic timèc thc SHD me tic katagrafèc anafor�c se diafore-

tik� shmeÐa tou hlektrikoÔ diktÔou. Epiprìsjeta, parousi�zontai leptome-

r¸c oi qrìnoi pou qrei�sthkan gia thn exagwg  thc SHD, gia ta dÔo eÐdh

shm�twn pou qrhsimopoi jhkan, thc armonik c perÐ thc opoÐac filtrarÐsth-

ke me zwnoperatì fÐltro to upì melèth s ma, kaj¸c kai tou megèjouc twn

epikaluptìmenwn parajÔrwn pou qrhsimopoi jhkan. H diadikasÐa thc proe-

pexergasÐac twn prwtogen¸n dedomènwn xekin� me thn upodeigmatoleiyÐa tou

arqikoÔ deÐgmatoc sta 441Hz, ¸ste na meiwjeÐ h upologistik  poluplokìth-

ta twn diadikasi¸n, krat¸ntac par�llhla thn aparaÐthth plhroforÐa gia tic

armonikèc thc SHD. Sth sunèqeia, efarmìzetai èna zwnoperatì fÐltro, ¸ste

na parameÐnoun mìno oi suqnìthtec pou eÐnai aparaÐthtec gÔrw apì mia armo-

nik , p.q. thn pr¸th armonik  sta 60Hz. Pio sugkekrimèna oi suqnìthtec

apokop c tou zwnoperatoÔ fÐltrou orÐzontai sta 59.95 − 60.05Hz gia thn

pr¸th armonik , 119.95−120.05Hz gia th deÔterh kai 179.95−180.05Hz gia

thn trÐth armonik . Sthn bibliografÐa oi perissìterec ergasÐec periorÐzontai

sthn an�lush filtrarismènwn shm�twn perÐ thn pr¸th armonik , gegonìc pou

odhgeÐ se esfalmènec ektim seic tic SHD stic peript¸seic shm�twn omilÐac,

ìpou parathroÔntai èntonec parembolèc kai jìruboc. Oi proanaferjeÐsec su-
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qnìthtec apokop c perÐ thn trÐth armonik  od ghsan se kalÔterh exagwg 

thc SHD. 'Enac akìmh par�gontac pou ephre�zei shmantik� thn poiìthta tou

exagìmenou s matoc kat� th di�rkeia thc proepexergasÐac eÐnai h t�xh tou

zwnodiabatoÔ fÐltrou. Eidikìtera gia thn perÐptwsh tou s matoc omilÐac h

t�xh tou fÐltrou diadramatÐzei shmantikì rìlo, kaj¸c mÐa lanjasmènh epi-

log  mporeÐ na odhg sei se kak  exagwg  thc SHD kai kat� sunèpeia se

lanjasmènh ektÐmhsh thc aujentikìthtac twn dedomènwn. Gia th sqedÐash

tou zwnodiabatoÔ fÐltrou epilèqjhke èna fÐltro peperasmènhc kroustik c

apìkrishc kai qrhsimopoi jhke to par�juro Hamming. Sth sunèqeia e-

pilègetai o arijmìc twn epikaluptìmenwn temaqÐwn sta opoÐa qwrÐzetai to

s ma pollaplasi�zontac me èna orjog¸nio par�juro. H di�rkeia tou para-

jÔrou pou qrhsimopoi jhke eÐnai gia to pr¸to s ma 20 sec   40 sec kai gia

to deÔtero s ma 33 sec   50 sec. Katìpin, gia k�je tem�qio upologÐzetai h

puknìthta f�smatoc isqÔoc me mÐa plhj¸ra mejìdwn, ìpwc: o Braquqrìnioc

Metasqhmatismìc Fourier (Short − TimeFourier Transform), h EktÐmh-

sh Paramètrwn S matoc me Amet�blhtec wc proc thn Peristrof  Teqnikèc

(Estimation of Signal Parameters viaRotational Invariant Techniques −
ESPRIT ), h mèjodoc Capon, h Taxinìmhsh Pollapl¸n Shm�twn (Multiple

Signal Classification−MUSIC), kai h Mèjodoc Mègisthc Pijanof�neiac

(Maximum−Likelihood Estimation−MLE). Sthn paroÔsa ergasÐa mele-

t¸ntai, epÐshc, oi mèjodoi tropopoihmènou periodogr�mmatoc, ìpwc oi mèjodoi

Welch, Blackman − Tukey kai Daniell. Koinìc paranomast c se ìlec tic

mejìdouc eÐnai h prosp�jeia na melethjoÔn kai na parousiastoÔn oi par�me-

troi pou qrhsimopoi jhkan se k�je mèjodo. Aut  h an�gkh proèkuye apì

to gegonìc pwc sthn up�rqousa bibliografÐa den anafèrontan oi par�metroi

pou èdinan ta antÐstoiqa apotelèsmata se k�je mèjodo. 'Opwc èdeixan ta

susthmatik� peir�mata thc paroÔsac melèthc, h anaparagwg  proteinìmenwn

mejìdwn me idiaÐterh epimèleia sthn epilog  twn paramètrwn od ghse sthn

epÐteuxh kalÔterwn apotelesm�twn. AfoÔ upologisjeÐ h puknìthta f�sma-

toc isqÔoc se k�je tem�qio, ex�gontai oi suqnìthtec pou antistoiqoÔn sto

mègisto mètro thc puknìthtac f�smatoc isqÔoc, kaj¸c oi geitonikèc thc. Sth

sunèqeia, efarmìzetai tetragwnik  parembol  me skopì thn kalÔterh ektÐmh-

sh thc SHD. AfoÔ gÐnei h exagwg  thc SHD se k�je tem�qio, h prokÔptousa
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qronoseir� summetèqei sth diadikasÐa elègqou thc aujentikìthtac tou s ma-

toc. Autì kajÐstatai dunatì me thn antiparabol  tou exaqjèntoc s matoc

SHD kai tou s matoc SHD anafor�c, ìpwc èqei metrhjeÐ apì eidik� ìrgana

uyÐsthc akribeÐac. O èlegqoc aujentikìthtac pragmatopoieÐtai wc proc dÔo

krit ria pistìthtac. To pr¸to krit rio eÐnai o suntelest c susqètishc en¸

to deÔtero krit rio eÐnai h tupik  apìklish twn sfalm�twn metaxÔ tou exa-

qjèntoc s matoc SHD kai tou antÐstoiqou anafor�c. 'Oson afora to pr¸to

s ma, h aÔxhsh tou parajÔrou apo 20 sec se 40 sec den odhgeÐ se beltÐwsh

thc akrÐbeiac twn elègqwn. Ta kalÔtera apotelèsmata gia to suntelest  su-

sqètishc parousi�zontai analÔontac to arqikì s ma perÐ thn pr¸th kai trÐth

armonik  me posostì pou ft�nei to 99.83% gia th mèjodo Welch. ExÐsou

uyhlì suntelest  susqètitshc parousi�zoun kai oi upìloipec mèjodoi me thn

Capon na aggÐzei to 99.77% gia thn trÐth armonik  kai tic mejìdouc ESPRIT

kai MUSIC na ft�noun to 99.79%. Axiìloga apotelèsmata prokÔptoun kai

kat� ton èlegqo me th qr sh thc tupik c apìklishc twn sfalm�twn. H mèjo-

doc Welch gia thn pr¸th kai trÐth armonik  parousi�zei th mikrìterh tupik 

apìklish sfalm�twn, 1.069mHz. ExÐsou mikr� sf�lmata parousi�zoun kai oi

upìloipec mèjodoi, me thn ESPRIT kai MUSIC na akoloujoÔn th mèjodo

Welch me tupik  apìklish sfalm�twn 1.202mHz kai 1.208mHz, antisto-

Ðqwc.

'Oson afora to deÔtero s ma, thn hqhtik  katagraf , h akrÐbeia gia ìlec

tic mejìdouc wc proc to suntelest  susqètishc xepern� to 90%. O megalÔte-

roc suntelest c susqètishc parathreÐtai gia tic mejìdouc Capon, ESPRIT

kaiMUSIC kai anèrqetai se 93.18%. H akrÐbeia wc proc to deÔtero krit rio,

thn tupik  apìklish twn sfalm�twn, parousi�zei tic mikrìterec timèc gia tic

mejìdouc Short−TimeFourier Transform kai Blackman−Tukey. Me thn

aÔxhsh tou parajÔrou sta 50 sec parathreÐtai aÔxhsh thc akrÐbeiac tou elèg-

qou aujentikìthtac kai gia ta dÔo krit ria. 'Opwc kai sthn perÐptwsh twn

33 sec, to megalÔtero suntelest  susqètishc, 94.44%, parousi�zoun oi mèjo-

doi Capon, ESPRIT kai MUSIC. Wc proc thn tupik  apìklish twn sfal-

m�twn, oi mèjodoi Short−TimeFourier Transform kai Blackman−Tukey
dÐnoun tic mikrìterec timèc.

To upologistikì kìstoc thc k�je mejìdou apoteleÐ ènan �llo shmantikì



par�gonta sthn epilog  mejìdou kai parajÔrou. Oi mèjodoi exagwg c kai

elègqou aujentikìthtac thc SHD sto pr¸to s ma me qr sh parajÔrou twn

20 sec apaitoÔn qrìnouc pou poikÐloun an�loga me th mèjodo pou uiojete-

Ðtai. Oi mèjodoi Short− TimeFourier Transform, Blackman− Tukey kai
Daniell apaitoÔn qrìnouc mikrìterouc twn 5 sec. Oi mèjodoi ESPRIT kai

MUSIC brÐskontai se uyhlìtera, all� apodekt� epÐpeda, perÐ ta 76 sec dÐno-

ntac kalèc akrÐbeiec. H mèjodoc Capon apaiteÐ polÔ qrìno, 1395 sec, o opoÐoc

thn kajist� mh praktik  se efarmogèc. 'Idioi, sqedìn, qrìnoi apaitoÔntai, ìtan

analÔetai to s ma perÐ th deÔterh kai trÐth armonik . Oi qrìnoi upologismoÔ

ìtan qrhsimopoieÐtai par�juro m kouc 40 sec parousi�zoun an�logh sumperi-

for� ìson afor� th seir� kat�taxhc twn mejìdwn. AxÐzei na shmeiwjeÐ pwc se

k�je perÐptwsh parathreÐtai aÔxhsh tou apaitoÔmenou qrìnou dÔo èwc treic

forèc. Oi mèjodoi exagwg c SHD kai elègqou aujentikìthtac sto deÔtero

s ma apaitoÔn perissìtero qrìno apì ì,ti sto pr¸to s ma. Kai gia tic dÔo

epilogèc parajÔrwn, h mèjodoc tou Welch apaiteÐ qrìno pou den endeÐknutai

gia praktik  qr sh kai anèrqetai se 23902 sec. An�logh qronik  apaÐthsh

emfanÐzei kai h mèjodoc tou Capon pou anèrqetai se 2248 sec. Oi upìloipec

mèjodoi eÐnai gr gorec kai praktik¸c efarmìsimec.
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Chapter 1

Introduction

In modern society, a huge amount of multimedia content is present in our

everyday life in the form of audio and video recordings. However, the multi-

media content can be edited, altered and modified for various purposes. This

is the reason why a lot of frauds occur in terms of altering footage and digital

content without been noticed by the victim. As Albert Einstein said, “It has

become appallingly obvious that our technology has exceeded our humanity”.

It is in this stage where forensic analysis plays a crucial role in detecting and

tracking these vicious changes of digital content.

Multimedia forensic analysis is widely used due to the rapidly increased

volume of shared audio and video recordings. Forensics have been studied a

lot in the literature [1]. In forensic sciences, authenticating digital content

and determining the time and place of recording are critical tasks. Opposed

to the use of technological development for evil purposes, the advanced sig-

nal processing techniques allow us to detect if the digital material has been

modified or tampered after its production. For determining the integrity and

the authenticity of the digital material, few tools have been developed and

used even in litigation cases, when evidence is manipulated and its origi-

nality is under question [2]. A forensic tool, which is extensively used for

forgery detection in multimedia recordings and time-stamp authentication is

the Electric Network Frequency (ENF) criterion, which can be used in order

to determine if a recording was captured at a specific time and location [2–4].
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This method is based on extracting and matching the ENF signal to a refer-

ence ENF signal from a database in order to determine whether the digital

content is authentic or has been altered and estimate the time or place the

recording occured.

ENF is the supply frequency in power distribution networks and its nomi-

nal value is 50Hz in Europe and 60Hz in the United States (U.S.) The major

property of the ENF signal is that its value is fluctuating in a random way

around its nominal one. These fluctuations vary between ± 50 to 100mHz

in U.S. [5] and they are supposed to be identical through an inter-connected

network.

In this thesis, we examine various spectral analysis methods for ENF es-

timation. All methods are applied to consecutive frames of the ENF signal

recorded from the power mains as well as an audio recording. Both sig-

nals are the ones used in [6]. The fundamental ENF and its harmonics are

estimated by tracking the maxima of the power spectrum after quadratic in-

terpolation in each frame [6]. Other methods for ENF extraction, proposed in

the literature, are tested using a variety of parameters during the extraction

process. These tests are carried out for both the ENF signal and the speech

recording, examining the peculiarities and difficulties arising from each signal

and the ways to overcome them for accurate ENF extraction. Motivated by

Professor Jian Li’s quote “Spectral estimation is an art”, here we put em-

phasis on the details of band-pass filtering of the raw signal prior to spectral

analysis and the fine tuning of the parameters involved in spectral analysis

techniques, which enable us to report more accurate results than those found

in the related literature with respect to the matching of the extracted ENF

and the ground truth one. The matching quality is measured with respect

to correlation-coefficient and standard deviation of error. Besides the extrac-

tion of fundamental frequency, ENF extraction is carried out in the higher

harmonics (e.g., the third one), which demonstrates a higher signal to noise

ratio (SNR) than the fundamental one, yielding better results, as observed

in [7].

This thesis tries to answer some major research questions about ENF

extraction. Specifically:
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⇒ Investigates the parameter tuning during the filtering process;

⇒ Conducts a systematic study of a variety of spectral estimation meth-

ods;

⇒ Provides the reader useful information and explanations about every

detail and parameter of each method;

⇒ Studies the behavior of each harmonic of the ENF signal and analyzes

the peculiarities of audio signal;

⇒ Measures the time requirements with respect to the method, the frame

length and the filtering procedure adopted for the extraction of the

ENF signal;

⇒ States every step of the procedure in order to be a useful reference for

reproducing the experiments conducted.

1.1 Thesis outline

This thesis is structured in six chapters. In the first chapter a brief introduc-

tion to the thesis is presented in order to define the basic concepts.

The second chapter deals with the existing literature about the ENF

extraction methods and algorithms. Also, a basic theory of the ENF is

presented in order to make clear the way this signal works. Moreover, the

ENF criterion is presented as basis of all methods.

A detailed presentation of the algorithms developed in the thesis and their

mathematical backround is extensively discussed in the third chapter.

The fourth chapter analyses the data used in the thesis and the procedure

followed for ENF extraction. Techniques are also presented for matching

the extracted ENF with the reference data in order to indicate whether the

recordings have been altered or not. The setup and the parameters used in

all methods are also discussed.

The fifth chapter presents the evaluation of all experiments and discusses

the experimental results in detail.
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The last chapter concludes the thesis and indicates topics of future re-

search.
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Chapter 2

Electric Network Frequency

(ENF)

2.1 Literature Overview

An introduction to ENF analysis, principles, procedures, and real world ex-

amples can be found in the seminal work of Catalin Grigoras [2–4]. The

unique property of ENF signal, acting as a fingerprint, is extensively anal-

ysed, methods for obtaining the ENF, matching the ENF with a ground truth

signal, and in-depth understanding of its behaviour are presented.

A procedure for ENF extraction, using Short-Time Fourier Transform

(STFT) followed by a quadratic interpolation, and a mean square error met-

ric for ENF matching is proposed in [8, 9]. Adaptive techniques for ENF

extraction based on dynamic programming are presented in [6], where a

detailed comparison between various techniques is made for digital audio

recordings. In [5], different parametric and non-parametric methods of ENF

estimation are elaborated, addressing the problem of extracting location in-

formation from the ENF signal. A more precise and detailed study, focusing

on determining the intra-grid location of recordings, is discussed in [10].

Many studies focus on time verification of recordings using different match-

ing procedures, such as the correlation coefficient approach proposed in [11].

In [12], the ENF signal is modeled as an autoregressive process and a decor-
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relation based approach is adapted to ENF matching. A computationally

efficient form of maximum-likelihood estimation is presented in [13] via a

multitone harmonic model, where signal-to-noise ratio (SNR) is also con-

sidered in the process. Cramer-Rao bound is, also, used for error estima-

tion. The maximum-likelihood frequency estimation is given by ω̂ML
0 =

argmaxω0
‖A(ω0)y‖2, where A is a projection matrix. In [14], a novel ap-

proach for authenticating audio signals is proposed. Max offset for cross-

correlation between the extracted signal and the reference ENF is adopted.

Besides answering whether the digital content was edited, this method, also,

determines the location the alterations occur. In [15], ENF signal is esti-

mated by making use of multiple harmonics with a weighted summation of

spectral bands according to local SNR. The estimated spectrum can be for-

mulated as: S(f) =
∑L

k=1wkPB,k(kf), where PB,k(kf) is the power spectrum

for a given time-frame and wk is the weight for the harmonic bands. The

calculation of wk is based on the SNR.

Apart from digital audio recordings, the ENF signal can be extracted from

digital video content recorded in indoor environments with the presence of

fluorescent lighting [16,17] in order to estimate the time of recording and ver-

ify its authenticity. In [18], two ENF extraction methods for video recordings

are developed, exploiting the rolling shutter mechanism of an imaging sensor.

Different pixel positions in consecutive frames and static regions are detected

for each method, respectively in order to derive the ENF flactuations.

2.2 ENF properties

Electric networks operate at a specific frequency, which is 50Hz in Europe

and 60Hz in the US. This frequency is called Electric Network Frequency

(ENF). ENF is not stable and it flactuates around its nominal value. These

flactuations occur instantly due to the differences between the produced and

consumed electrical power [2]. Every moment the need for electrical power

differs and thus the rotational speed of energy generators changes. These

unbalances cause the ENF to vary around 50Hz and 60Hz.

ENF flactuations are non-periodic and they can not be predicted even if
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we have recorded for a long period of the signal. Although the ENF pattern

is not predictable through time, it is commonly accepted that its behaviour

is stable in the whole network, so the pattern does not change [3]. This

makes the ENF signal identical for authenticating digital content in case a

reference database of ENF signals is captured. The ENF can be formulated

at any given moment as [2]:

f = [50±∆f ]Hz (2.1)

where ∆f is the deviation between the instantaneous frequency and its nom-

inal value. In Figure 2.1, a 40min recording of the ENF pattern is shown.

This ENF signal was captured by a Frequency Disturbance Recorder (FDR)

in the US. ENF flactuates around its fundamental frequency of 60Hz.

Figure 2.1: Reference ENF pattern

According to [3], operation conditions of ENF vary with respect to ∆f

value:

⇒ If ∆f ≤ 50mHz, the flactuations are considered to be normal.
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⇒ If 50mHz < ∆f ≤ 150mHz, the flactuations exceed the normal val-

ues, but no danger of corrupting the ENF exists.

⇒ If ∆f > 150mHz, the flactuations yield major disturbances and the

network proper functioning is at risk.

ENF unique properties make it a powerful tool in forensic analysis. Re-

cent advances in signal processing will enable scientists to further investigate

new ways and methods for accurately determining ENF signal. The basic

properties of the ENF signal are listed below [3]:

⇒ ENF signal occurs in random way. No patterns exist.

⇒ Its pattern is identical in the same network.

⇒ Apart from the fundamental frequency, ENF also exists in its higher

harmonics [7].

2.3 The ENF criterion

The ENF criterion is a powerful tool for authenticating digital media content.

It is introduced by Catalin Grigoras [2, 3, 9] for determining the time and

location of digital recordings and it is based on the unique properties of the

ENF signal.

ENF flactuations leave a unique timestamp on the digital recordings.

Given the fact that these recordings are exactly the same at any point on

the electrical grid at the same time, it is clearly stated that their analysis

could provide useful information about the time of the recording and their

integrity. Traces of these deviations exist in the digital recordings, when the

recordings are captured by devices connected to the grid. Such disturbances

have to be isolated in order to be extracted in the most accurate way. After

the extraction, the ENF should be matched against a reference grid ENF

signal at the corresponding time.

Both the extraction methods and the matching algorithms are investi-

gated in the most challenging environments, where noise is present in the
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recordings. The subsequent chapters deal with different extraction methods,

trying to provide the reader an in-depth insight of the different extraction

approaches, using state-of-the-art methods.
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Chapter 3

ENF Procedures

ENF extraction can be achieved through a variety of different paths according

to the needs and the available algorithms. Based on the properties of ENF

signal and electrical networks, three extraction methods exist, as presented

by Grigoras in [2] and [3]. These methods can be categorized as follows:

⇒ Time/frequency domain analysis: It is based on spectrogram compu-

tation. The matching procedure is visually accomplished against the

reference signal. It is suitable for short-time recordings (usually no

longer than 10− 15 min).

⇒ Frequency-domain analysis: In this case, the periodogram is applied to

short-time segments of data and the local maxima of the spectrum mag-

nitude are located. The corresponding frequency of the local maximum

is the estimate of ENF. The estimated ENF is compared to the refer-

ence ENF entry of a ground truth database. This method is used after

a band-pass filter is applied to the raw data. Other spectral methods

can be applied as well.

⇒ Time-domain analysis: It uses the zero-crossing measurements after

applying a band-pass filter around the nominal frequency.

An automated ENF extraction procedure was proposed by Cooper in

[8, 9]. It is presented and discussed in detail next. The matching part of
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the extracted ENF signal against the reference one is conducted with respect

to the correlation-coefficient approach [11] or a slight modification of mean

square error, which uses the standard deviation of errors, as done in [6].

3.1 Dataset description and experimental setup

The two datasets used in [6] and the ENF ground truth associated to them

are discussed here. In particular, the first dataset was recorded by connecting

an electric outlet directly to the internal sound card of a desktop computer

with a voltage divider and the second one was a speech recording captured by

the internal microphone of a laptop computer. Both recordings were sampled

at 44.1 kHz using 16 bits per sample.

Two sets of parameters are used in this thesis, as shown in Table 3.1.

The first set of frame length L1 is the same as in [6]. Afterwards, the frame

length L2 is increased in order to demonstrate its impact in accuracy and

computational complexity. A time shift of 1 sec equals to 441 samples of

the raw data as long as the sampling frequency is equal to 441Hz (after

downsampling).

Table 3.1: Frame parameters (in sec)

Data 1 Data 2
Parameters (recorded from (speech

power mains) recording)
Time shift, T 1 1
Frame length, L1 [6] 20 33
Frame length, L2 40 50

3.2 ENF extraction procedure

The procedure followed for ENF extraction is proposed by Cooper in [8, 9]

and is slightly modified according to the needs of this work. The basic steps of

the procedure entail: a) downsampling the raw signal; b) band-pass filtering,
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which depends on the nominal frequency of the ENF signal; c) extraction pro-

cedure and corresponding algorithms; d) quadratic interpolation calculations

for accurate frequency estimation and e) matching procedure against the ref-

erence database, which contains the ground-truth ENF measurements. The

whole process is detailed not only to guarantee a self-contained treatement of

the topic investigated, but also to enable reproducibility of the experiments

conducted by the interested reader.

Firstly, the original recordings are down-sampled to a frequency that

contains the fundamental frequency and some of its higher harmonics, i.e.,

Fs = 441Hz. By doing so, the ENF frequency is preserved into the down-

sampled signal and the computational cost is significantly reduced. The ini-

tial sample decimation depends on the frequency of interest, i.e., 50 or 60Hz

and the number of harmonics to be studied. In this study, the first three

harmonics are to be studied and the nominal frequency is 60Hz.

The second step is a band-pass filtering of the signal around the nomi-

nal ENF or its harmonics. Signal filtering is of high importance and filter

parameter selection should be done very carefully. In contrast to Data 1,

speech recording (Data 2) contains many interferences and its SNR is low.

The first and the third harmonics are too weak to be estimated [6]. When

the second harmonic of Data 2 is computed, some interesting properties are

arised. They are discussed in detail. The procedure of signal filtering re-

quires two basic specifications. a) The band-pass edges and b) the filter

order. The filter order should be an odd number. In our work, as concerns

Data 1, the band-pass edges of the filter are set at 59.9Hz and 60.1Hz for

the fundamental frequency and the filter order is 1501. The second harmonic

band-pass edges are set at 119.9Hz and 120.1Hz, respectively. The filter

order remains the same, i.e., 1501. The third harmonic band-pass edges are

set at 179.9Hz and 180.1Hz and the filter order is chosen equal to 1001.

Any changes in band-pass edges or filter order did not have any impact on

the results of matching procedure.

As mentioned before, the ENF signal apart from its nominal frequency,

can also be found in the second, third, etc. harmonics. In Figures 3.1, 3.2,

and 3.3, the Power Spectral Density (PSD) of the first three harmoncis is
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depicted, after band-pass filtering applied to Data 1. In each case, we can

attest that the filtering was correctly applied by observing the magnitude of

the PSD of the band-passed ENF signal and the PSD of the original (raw)

signal.
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Figure 3.1: PSD of the signal before and after band-pass filtering around the
first harmonic (i.e., 60Hz).

Figure 3.2: PSD of the signal before and after band-pass filtering around the
second harmonic (i.e., 120Hz).
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Figure 3.3: PSD of the signal before and after band-pass filtering around the
third harmonic (i.e., 180Hz).

In each case, a Hamming window with length equal to filter order is used

in band-pass filter design. The aforementioned band-pass filter specifications

are adopted after a wide range of experiments. Fine tuning of the filter

parameters is found to be of crucial importance. Proper parameter selection

yields accurate ENF extraction, while a slight parameter modification yields

less accurate results.

During the next step, the filtered signal is split into K overlapping frames

as shown in Figure 3.4. Each frame is obtained by applying a rectangular win-

dow of length L seconds to the filtered signal and is shifted by T = 1 sec from

its immediate predecessor frame. Two choices for L, denoted as L1 and L2,

are indicated in Table 3.1 along with T . So, for the aforementioned frame pa-

rameters, the frame size would be N = frame length×sampling frequency,

i.e. [20, 40, 33, 50] × 441 samples. Frames are common in short-term signal

processing due to the fact that they increase frequency resolution and im-

prove ENF estimation.
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Figure 3.4: Overplapping windows for spectral estimation.

The next step involves spectral estimation. For each consecutive frame,

the power spectrum is estimated by various spectral analysis techniques. This

step is of high importance. Each method applied has its own advantages and

disadvantages. So, a careful choice should be done. In this thesis, a wide

range of different methods are tested in order to demonstrate the benefits of

each approach. A systematic study is conducted using a refined periodogram,

a refined filter-bank, and high-resolution spectral estimation methods. These

approaches are discussed in detail in Chapter 4.

Regarding Data 1, the band-pass filtering was crucial for proper and

accurate ENF extraction. In Figure 3.5, the extracted ENF signal by the

Capon method for the first harmonic is shown. For illustration purposes the

estimated ENF signal is shifted by 0.05Hz.
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Figure 3.5: ENF signal of the band-pass filtered Data 1 signal around the
first harmonic. (filter order 1501, band-pass edges 59.95Hz and 60.05Hz).
Capon method was used for the extraction of the ENF.

The speech recording (Data 2) presented a completely different behav-

ior. This is because of the noise existing in this kind of recordings due to

the equipment used to capture them. Using the same filter order as previ-

ously, the results of ENF using the Short-Time Fourier Transform (STFT)

approach, showed a completely false diagram. For given band-pass edges at

119.95Hz and 120.05Hz and filter orders 1501 and 4801 respectively, it is

clear that a false choice of filter order is going to lead to false results, as

shown in Figures 3.6 and 3.7.

In Figure 3.6, the extracted ENF for audio signal (Data 2) is totally false

due to interferences that were not cut during the filtering step despite the

strict cut-off frequencies. These results arose due to the low filter order.

Second harmonic of Data 2, after band-pass filtering with filter order 1501

and band-pass edges 119.95Hz and 120.05Hz. The STFT was used for the

extraction of the second harmonic. The second harmonic was scaled by a

factor 2 to fall in the range of ENF.
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Figure 3.6: ENF signal of Data 2 with filter order 1501 for the second har-
monic with band-pass edges 119.95Hz and 120.05Hz. The STFT method
was used for the ENF extraction.
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In Figure 3.7, the extracted ENF for audio signal (Data 2) is clearly

improved and provided accurate ENF extraction results. Second harmonic

of Data 2, after band-pass filtering with filter order 4801 and band-pass

edges 119.95Hz and 120.05Hz. The STFT was used for the extraction of

the second harmonic. The second harmonic was scaled by a factor 2 to fall

in the range of ENF.

Figure 3.7: ENF signal of Data 2 with filter order 4801 for the second har-
monic with band-pass edges 119.95Hz and 120.05Hz. The STFT method
was used for the ENF extraction. ENF signal is shifted by 0.05Hz for illus-
tration puproses.

In Figure 3.8, the ESPRIT method was used for ENF extraction for the

second harmonic of Data 2 using the proper filter order (i.e., 4801). The

ESPRIT method provides an ENF signal visually closer to the reference one

than the STFT in Figure 3.7. Second harmonic of Data 2, after band-pass

filtering with filter order 4801 and band-pass edges 119.95Hz and 120.05Hz.

The ESPRIT was used for the extraction of the second harmonic. The second

harmonic was scaled by a factor 2 to fall in the range of ENF.
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Figure 3.8: ENF signal of Data 2 with filter order 4801 for the second har-
monic with band-pass edges 119.95Hz and 120.05Hz. ESPRIT method was
used for the extraction. The ENF extracted by ESPRIT is shifted by 0.05Hz
for illustration purposes.

The fine tuning of filtering parameters is of vital significance for the ac-

curate ENF extraction. The first example (Figure 3.6) leads to a matching

accuracy of 2%, while the second one (Figure 3.7) leads to an accuracy of

92%. These results would be discussed in detail in Chapter 5.

A comparison was made, also, using the thrid harmonic of the speech

recording, which is subsequently scaled by a factor 3 to fall in the range of

the ENF. As mentioned in [6], the third harmonic is too weak to provide an

efficient estimation of the ENF. Even if the results are rather rough, we can

also point out the differences between the ENF signal extracted using a low

filter order and a high one. The order of 4801 provides a smoother curve,

whose values are closer to the real frequency values. Figures 3.9 and 3.10

demonstrate these differences. It is worth mentioning that the band-pass

edges and the extraction method are those used for the second harmonic,

previously.
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Figure 3.9: ENF signal extracted from Data 2 filtered with filter order 1501
and band-pass edges 179.95Hz and 180.05Hz. The third harmonic was
scaled by a factor 3 to fall within the ENF range.

Figure 3.10: ENF signal extracted from Data 2 filtered with filter order 4801
and band-pass edges 179.95Hz and 180.05Hz. The third harmonic is scaled
by factor 3 to fall within the ENF range.
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3.3 Quadratic interpolation

Let φ̂r(ω`) be the periodogram of N = LFs samples-long rth frame, where

ω` = 2π
N
`, ` = 0, 1, . . . , N−1, are the frequency samples and Fs is the sampling

frequency of each signal. The frequency sample ω`max , which corresponds to

the maximum periodogram value is extracted as a first ENF estimate.

In order to obtain a more accurate estimation, a quadratic interpola-

tion (QI) is employed, which fits a quadratic model to the logarithm of the

estimated power spectrum about ω`max [6, 8, 19]. To estimate ω`max , one esti-

mates the power spectral density of each frame and searches for its maximum

magnitude. Power spectrum is calculated for each frame. Power spectrum

is equal to the normalized squared magnitude of the discrete-time Fourier

transform of each frame. The frame length is used for normalization. QI

offers a low computational cost and enables the extraction of the ENF signal

with high resolution. The steps of QI are briefly described next as in [9]. Let

βq = log φ̂r(ω`max+q), q = −1, 0, 1:

⇒ Select bin β0 = log φ̂r(ω`max)

⇒ Select the adjacent bins on either side of β0, i.e., β−1 = log φ̂r(ω`max−1)

and β1 = log φ̂r(ω`max+1);

⇒ Fit a quadratic model to these three points;

⇒ Find the interpolated value of the quadratic model, which corresponds

to quadratic peak δ;

By using the two adjacent frequencies around ω`max, a more accurate ENF

estimate is obtained as ω = ω`max + δ, where

δ =
1

2

β−1 − β1
β−1 − 2β0 + β1

(ω`max+1 − ω`max) (3.1)

The frequency estimated by the QI is stored as the extracted ENF value.

Hereafter, the aforementioned spectral estimation method is replaced by

other non-parametric and parametric spectral analysis methods.
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3.4 Matching procedure

Having extracted the ENF from either the recorded signal from the power

mains (Data 1) or the audio recording (Data 2), a matching procedure has

to be performed against the ground truth information in order to identify

the time the recording has been captured. Using the notation introduced

in [6], let f = [f1, f2, . . . , fK ]T be the extracted ENF signal, which comprises

the ENF estimated at each second. Let also g = [g1, g2, . . . , gK̃ ]T for K̃ > K

be the reference ground truth ENF, which comprises the actual ENF values

monitored and kept in the records of a power corporation at various time

instants. In [8], the association is being done by minimizing the squared

error between f and g̃(l) = [gl, gl+1, . . . , gl+K−1]
T , i.e.,

lopt =
K̃−K

argmin
l=1

‖f − g̃(l)‖22 (3.2)

An alternative matching criterion, proposed in [11], is the correlation match-

ing, i.e.,

lopt =
K̃−K

argmax
l=1

c(l) (3.3)

where c(l) is the sample correlation coefficient between f and g̃(l) defined as

c(l) =
fT g̃(l)

‖f‖2 ‖g̃(l)‖2
(3.4)

To measure the accuracy of ENF extraction by various algorithms, one may

employ the maximum correlation coefficient c(lopt) measured on either Data 1

or Data 2, respectively. Alternatively, one may employ the standard devia-

tion of the error between the true ENF and the estimated one. The former

figure of merit was found to be more accurate than the latter one [11]. A

flowchart depicting the process implemented is presented in Figure 3.11.
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Initial signal input

Downsampling to 441Hz

Band-pass filtering around the frequency of interest

Split data into K overplapping frames

Apply a rectangular window to each frame

Compute spectral estimate of each frame

Quadratic interpolation

ENF extraction

Matching the extracted ENF against a reference database

Figure 3.11: Flowchart of ENF extraction procedure.
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Chapter 4

Algorithms for Spectral

Analysis

4.1 Short-time Fourier transform

The Short-Time Fourier Transform (STFT) is one of the most common al-

gorithms used in ENF extraction. STFT is based on dicrete-time Fourier

transform and is computed by means of the Fast-Fourier Transform (FFT).

It constitutes a basic and powerful tool in audio signal processing and also,

in analyzing quasi-stationary signals [20]. The initial recorded signal (time-

domain) is divided into overlapping frames multiplied by a slidding window

w(). STFT is defined [20]:

Xn(ωk,m) =
∞∑

m=−∞

w(n−m)x(m)e−jωkm (4.1)

The periodogram is calculated by squaring the magnitude of STFT. It

is a basic tool in forensics analysis. Spectrogram visually respresents the

frequency spectrum of signal as it varies within time.
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4.2 Welch method

A refined periodogram method is the Welch method [21]. In this method,

each frame is divided into overlapping segments and each segment is multi-

plied by a temporal window. Let u(t) and yj(t) denote the temporal window

and jth segment, respectively. Here, adjacent segments overlap by 1000

samples and each segment has length of M = N
4

= LFs

4
samples. The Welch

estimate of power spectral density (PSD) is given by

φ̂w(ω) =
1

S

S∑
j=1

φ̂j(ω) (4.2)

where S = 7 and φ̂j(ω) is the windowed periodogram corresponding to yj(t),

i.e.,

φ̂j(ω) =
1

MP

∣∣∣∣∣
M∑
t=1

u(t) yj(t) e
−iωt

∣∣∣∣∣
2

(4.3)

with P denoting the power of the temporal window u(t). A rectangular win-

dow has been employed. The Welch method yields accurate ENF estimation

without being affected by interferences, especially in the second harmonic of

the ENF in both datasets. In speech dataset, the segment length equals to

M = N
2

= LFs

2
samples.

4.3 Blackman-Tukey spectral estimator

The Welch estimator (4.2) can be related to the Blackman-Tukey (BT) spec-

tral estimator for suitable choices of the lag window and the autocovari-

ance estimate [21]. The tradeoff between spectral resolution and statistical

variance should be considered in order to choose the window’s length. Ac-

cordingly, a natural choice for a refined periodogram is the Blackman-Tukey

estimate given by

φ̂BT (ω) =
M−1∑

k=−(M−1)

w(k) r̂(k) e−iω k (4.4)
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where M = N
2

= L Fs

2
for the first and third harmonic and M = N = LFs

for the second harmonic in both datasets.

4.4 Daniell method

Another non-parametric method is the Daniell method [21], which yields the

refined spectral estimate

φ̂D(ω`) =
1

2J + 1

k+J∑
j=k−J

φ̂p(ωj) (4.5)

for dense frequency samples ω` = 2π
Ñ
`, ` = 0, 1, . . . , Ñ . Here, the values

J = 2 and Ñ = 4N = 4LFs have been used. PSD estimation using Daniell

method yields a non-negative function. It is worth noting that Blackman-

Tukey spectral estimates are not necessarily non-negative.

4.5 Capon method

The periodogram can be interpreted as a filter bank approach, which uses

a band-pass filter whose impulse response vector is given by the standard

Fourier transform vector
[
1, e−iω, . . . , e−i(N−1)ω

]T
. The Capon method, is

another filter bank approach based on a data-dependent filter [21]:

h =
R̂−1a(ω)

a∗(ω) R̂−1 a(ω)
(4.6)

where a(ω) = [1, e−iω, . . . , e−imω]
∗

and [·]∗ denotes conjugate transposition.

In (4.6), R̂ is an estimate of the auto-covariance matrix

R̂ =
1

N −m

N∑
t=m+1


y(t)

...

y(t−m)

[y∗(t), . . . , y∗(t−m)
]
. (4.7)
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Here, m = 2 and N = LFs. The Capon spectral estimate is given by:

φ̂(ω) =
m+ 1

a∗(ω) R̂−1 a(ω)
. (4.8)

In practice, the Capon method has been found to be able to resolve fine

details of a PSD, such as closely spaced peaks [21], making it a superior al-

ternative of periodogram-based methods. Accordingly, it is a suitable method

for ENF estimation.

4.6 ESPRIT

ENF estimation can be cast as an estimation of a line spectrum. Therefore,

one may choose a suitable parametric method for solving the just described

problem. Estimation of Signal Parameters by Rotational Invariant Tech-

niques (ESPRIT) is a straightforward choice, as was done in [6]. In particu-

lar, one has to choose the size m of the estimated auto-covariance matrix R̂

and the dimension n of the diagonal matrix D = diag(e−i ω1 , . . . , e−i ωn). Let

Im−1 denote the identity matrix of size (m − 1) × (m − 1). The frequencies{
ωk
}n
k=1

are estimated as − arg(v̂k), where
{
v̂k
}n
k=1

are the eigenvalues of the

estimated matrix φ̂ [21]:

φ̂ = (Ŝ∗1Ŝ1)
−1 Ŝ∗1Ŝ2. (4.9)

In (4.9), Ŝ1 = [Im−1|0] Ŝ, Ŝ2 = [0|Im−1] Ŝ, and Ŝ is the matrix having as

columns the n principal eigenvectors of R̂. Here, m = 4 and n = 2. ESPRIT

provides more accurate frequency estimates than other parametric methods

for line spectra [21].

4.7 Multiple signal classification

The Multiple Signal Classification (MUSIC) algorithm is frequently used for

frequency estimation. Thus, it is a suitable method for ENF extraction [21].

The MUSIC algorithm is used for time-delay estimation and is considered to
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be a high-resolution method [22]. Its limitations exist due to the fact that

model order needs to be specified before the analysis and parameter searching

requires increased computing power. The first step for frequency computa-

tion involves the estimation of signal’s covariance matrix R̂. Afterwards, its

eigen-analysis resulting to the computation of its eigenvectors:

R̂ =
1

N

N∑
t=m

ỹ(t)ỹ∗(t) (4.10)

The frequency estimate is given by the following equation [21]:

PMU =
1

a∗(ω)ĜĜ∗a(ω)
(4.11)

where PMU is called ”pseudospectrum”, because it does not represent the true

PSD, but it reveals that sinusoidal components are present in the signal. Ĝ

denotes the matrix made from the eigenvectors
{
ĝ1, · · · , ĝm−n

}
of R̂ and

spans the subspace of noise. The results of the MUSIC method are similar

to the ESPRIT one and led to an accurate ENF estimation.

4.8 Maximum-Likelihood estimation

The Maximum-Likelihood estimation (MLE) approach for ENF extraction is

presented in [13]. The log-likelihood function’s maximization of the vector y

with respect to ω0 results to the MLE of ω0:

ω̂ML
0 = argmax

ω0

‖PA(ω0) y‖2 (4.12)

where vector y contains the initial signal, and

PA(ω0) = A(ω0)
[
AT (ω0)A(ω0)

]−1
AT (ω0) (4.13)

is the projection matrix onto the subspace spanned by the column of A(ω0)

with dimensions N × (2M + 1). The 1st row of A(ω0) is[
1, cos(ω0t1), . . . , cos(ω0Mt1), sin(ω0t1), . . . , sin(ω0Mt1)

]
.

The equation 4.12 of the MLE of ω0 can be rewritten as
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ω̂ML
0 = argmax

ω0

yTPA(ω0)y (4.14)

Also, the expected maximum estimation accuracy is given by the Cramer-Rao

bound on the squared estimation error, as presented in [13].

4.9 Frequency tracking algorithm

An ENF estimation method based on dynamic programming is presented

in [6]. The ENF is estimated by finding the peak locations of the spectrum

in each frame. These locations represent the estimated frequency. Dynamic

programming is used in order to define a minimum cost path. The magnitude

of this cost is calculated by the difference between peak locations in two

consecutive frames. This cost function does not allow important frequency

jumps between frames and the aforementioned path is employed for the ENF

extraction. The ENF is estimated by computing the minimum cost path

among the first and the last frame of the signal. The Bayesian Information

Criterion (BIC) is used to determine the number of peaks for each frame.

Minimizing the BIC criterion yields in the number of peaks nk. The BIC is

formulated as [23]:

BIC(nk) = M ln

(∥∥∥∥∥y −
2nk∑
k=1

a(ωk)â(ωk)

∥∥∥∥∥
2)

+ 5(2nq)lnM. (4.15)

For frame k = 1, . . . , K, the estimated peak locations which correspond

to frequencies are denoted as Pk =
{
Pk1, Pk2, . . . , Pqkk

}
. The core of this

method is based on finding a path
{
fk
}K
k=1

with peak locations fk ∈ Pk and

fk−fk−1 = min for k = 1, . . . , K. The set of the estimated peak (frequency)

locations, which correspond to the ENF estimation, can be calculated by

minimizing the following [6]:

C = minfk∈Pk

K∑
k=2

(fk − fk−1)2, k = 1, . . . , K. (4.16)
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Minimizing the above equation by adopting an exhaustive search is imprac-

tical and, thus, a dynamic programming approach in recursively determining

the minimum cost path is employed. This is achieved by minimizing the cost

from a given frame j < K to the last frame denoted by J(j, fj):

J(j, fj) = min
fk∈Pk

K∑
k=j+1

(fk − fk−1)2, fj ∈ P, k = j + 1, . . . , K. (4.17)

The computational complexity of dynamic programming is of O (KP 2
max),

where Pmax is the number of peaks appear in the frame with the highest BIC

value. This frequency tracking algorithm based on dynamic programming

will be notated as “ method’s name (tracking)” in the thesis.
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Chapter 5

Experimental Evaluation

All ENF extraction methods adopted in the thesis are tested on datasets

Data 1 and Data 2 using the two choices of frame length L, namely L1 as

in [6] and L2 shown in Table 3.1. The first choice is used to allow comparisons

with the results disclosed in [6], where a novel algorithm for ENF extraction,

based on dynamic programming, is suggested. The second one is used for

studying the behavior of ENF extraction methods, when longer frames are

used. Although longer frame lengths seem to provide higher resolution, their

usage may lead to smoother signals, which suffer from the loss of valuable

information. In each case, this work suggests that proper filtering and pa-

rameter selection of spectral estimation methods can provide high quality

ENF estimation.

5.1 Data 1 results

In this section, the results of all methods adopted in this thesis regarding

Data 1 are presented for both frame length L1 and L2. The results are

analyzed and comparisons with other works are discussed. Firstly, we proceed

by demonstrating the extracted ENF against the reference ENF signal. The

extracted ENF signal was obtained by the third harmonic scaled by a factor

3 to fall within the range of ENF. The ENF obtained by STFT is shown

in Figure 5.1. The ENF extracted by the Capon method is shown in Figure

41



5.2. The ENF extracted by the Welch method is depicted in Figure 5.3, while

BT and ESPRIT methods applied to ENF extraction are demonstrated in

Figure 5.4 and Figure 5.5, respectively. It is worth mentioning that the

MUSIC method yields similar results to ESPRIT for both ENF contour and

matching accuracy. For illustration purposes all overlaid methods are shifted

by 0.05Hz.

Figure 5.1: Extracted ENF signal against a reference one for the STFT
applied to Data 1 for frame length parameter L1. The extracted ENF signal
is shifted by 0.05Hz for illustration purposes.
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Figure 5.2: Extracted ENF signal against a reference one for the Capon
method applied to Data 1 for frame length parameter L1. The extracted
ENF signal is shifted by 0.05Hz for illustration purposes.

Figure 5.3: Extracted ENF signal against a reference one for the Welch
method applied to Data 1 for frame length parameter L1. The extracted
ENF signal is shifted by 0.05Hz for illustration purposes.
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Figure 5.4: Extracted ENF signal against a reference database for the
Blackman-Tukey method applied to Data 1 for frame length parameter L1.
The extracted ENF signal is shifted by 0.05Hz for illustration purposes.

Figure 5.5: Extracted ENF signal against a reference database for the ES-
PRIT method applied to Data 1 for frame length parameter L1. The ex-
tracted ENF signal is shifted by 0.05Hz for illustration purposes.
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For illustration purposes, the ENF signals extracted from Data 1 by vari-

ous estimation methods are overlaid in Figure 5.6, when L = L1. The ENF is

estimated from the third harmonic down-shifted to 60Hz scaled by a factor

3. The various ENF contours are shown with increment of 0.05Hz start-

ing from 59.95Hz. Daniell and BT methods yield similar ENF contours to

Welch and STFT, respectively. Similarly, the MUSIC method yields similar

results to ESPRIT.

Figure 5.6: Extracted ENF signal of all methods against reference database
for Data 1 and frame parameters L1.

For Data 1 using frame length L1, the accuracy between the ENF sig-

nal extracted by various spectral analysis methods and the ground truth,

measured by frequency disturbance recorders with accuracy up to about

± 0.5mHz [6], is summarized in Tables 5.1 and 5.2. The maximum correla-

tion coefficient is listed in Table 5.1, while the minimum standard deviation

of error is gathered in Table 5.2. It is seen that the ENF estimated from the

first harmonic and the third one is more accurately estimated than that esti-

mated by the second harmonic. For the first and third harmonics, the Welch

and the ESPRIT methods yield the best performance with respect to both

figures of merit. MUSIC method presented almost identical results to ES-
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PRIT for all three harmonics. Although these methods seem to be the most

accurate, all algorithms performed very well and this is due to the proper

signal filtering and parameter selection. The third harmonic seems to be

the most accurate for all algorithms with respect to correlation-coefficient.

The minimum standard deviation of errors yields better accuracy in third

harmonic than the other two for all methods apart from ESPRIT and MU-

SIC. The second harmonic is the weaker of the three, but it still provides

acceptable ENF estimation. The errors between the extracted ENF and the

reference one are at the order of a few mHz.

Table 5.1: Maximum correlation coefficient for various algorithms (Data 1,
L1)

Algorithm 60Hz 120Hz 180Hz
STFT 0.9886 0.985 0.9957
Welch 0.9983 0.985 0.9983
Blackman-Tukey 0.9924 0.985 0.9978
Daniell 0.9906 0.985 0.9977
Capon 0.9952 0.9913 0.9977
ESPRIT 0.9979 0.9913 0.9979
MUSIC 0.9979 0.9913 0.9979

Table 5.2: Minimum standard deviation of error for various algorithms
(Data 1, L1)

Algorithm 60Hz 120Hz 180Hz
STFT 2.806 · 10−3 3.202 · 10−3 1.303 · 10−3

Welch 1.069 · 10−3 3.202 · 10−3 1.069 · 10−3

Blackman-Tukey 2.284 · 10−3 3.202 · 10−3 1.218 · 10−3

Daniell 2.542 · 10−3 3.41 · 10−3 1.245 · 10−3

Capon 1.806 · 10−3 2.9 · 10−3 1.237 · 10−3

ESPRIT 1.198 · 10−3 2.901 · 10−3 1.202 · 10−3

MUSIC 1.198 · 10−3 2.901 · 10−3 1.208 · 10−3

Compared to [6], the accuracy of the ESPRIT method applied to Data 1

is increased from 0.947 to 0.9913 for the second harmonic, which is the weak-

est. Similarly, the standard deviation of error is decreased from 6.57 · 10−3

to 2.901 · 10−3. Also, the most effective method presented in [6] was the
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STFT (Tracking), which uses a discrete dynamic programming approach,

but still it is not so accurate as the methods presented in the thesis. In Table

5.3 and Table 5.4 the results for STFT (Tracking) are presented for both

correlation-coefficient and minimum standard deviation of error. Comparing

these findings to the results presented in Tables 5.1 and 5.2 for the third

harmonic, we see that the methods developed here, which employ proper

filtering and parameter selection, yield a better ENF estimation than that

in [6].

Table 5.3: Correlation-Coefficient for STFT (Tracking) (Data 1, L1)

Algorithm 180Hz
STFT (Tracking) 99.68

Table 5.4: Minimum standard deviation of error for STFT (Tracking)
(Data 1, L1)

Algorithm 180Hz
STFT (Tracking) 1.851 · 10−3

Another method implemented is the MLE used in [13]. In our work, sim-

ilar results were found for the MLE algorithm with respect to both standard

deviation of errors and correlation-coefficient between the ENF estimated by

MLE and reference one, as shown in Table 5.5 and Table 5.6. The standard

deviation of errors with respect to reference database for Data 1 was found

0.76mHz for frame length duration T = 3 sec. This estimation came from

the first harmonic of Data 1, since the two other harmonics (i.e., 2, 3) did not

provide better results neither remarkable improvements.. The frame length

used in the thesis for MLE is T = 1 sec.

47



Table 5.5: Correlation-coefficient between the ENF estimated by the MLE
and the reference one (Data 1)

Algorithm 60Hz
Maximum-likelihood estimation 99.91

Table 5.6: Minimum standard deviation of error between ENF estimated by
MLE and the reference one (Data 1)

Algorithm 60Hz
Maximum-likelihood estimation 0.00078

Regarding the implementation of the MLE algorithm is worth noting that

increasing the frame length causes a significant drop in accuracy both with

respect to correlation-coefficient and standard deviation of error. This is

depicted in Figure 5.7 and Figure 5.8. Both figures show the accuracy as the

frame length increases till 100 sec.

Figure 5.7: Correlation-coefficient for the MLE algorithm versus frame
length.
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Figure 5.8: Standard deviation of errors for the MLE algorithm versus frame
length.

By employing the frame length L2, which is longer than L1, one expects

an increased SNR and more fine spectral resolution at the cost of lower time

resolution. This is evident in Tables 5.7 and 5.8 for Data 1. Frame-by-frame,

ENF extraction followed by quadratic interpolation yields more accurate re-

sults using STFT with respect to both maximum correlation coefficient and

minimum standard deviation of error than using L1. The first harmonic of

ENF is more accurately estimated by the ESPRIT and Welch methods with

respect to both aforementioned figures of merit. It is worth noting, that all

periodogram-based methods (i.e., STFT, Welch, Daniell, BT) yield a more

accurate estimation of the ENF from the second harmonic than the Capon

and ESPRIT methods. This is attributed to the “noisy” nature of the es-

timate of auto-covariance matrix due to the weak SNR associated to this

harmonic.

Regarding to L2 parameter two kind of behaviors are noticed. The first

one includes the methods that provide better figures of merit than those

when the smaller frame length (L1) was used. Since a longer frame length

is adopted, a better resolution is achieved. The second kind of behavior in-

cludes the methods that provide worst figures of merit than those when the
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smaller frame length (L1) was used. It is worth mentioning that the longer

frame length makes the extracted signal smoother and valuable information

is lost, as shown in Figure 5.9 for the Capon method. An improvement in

the extracted ENF is obtained for the STFT method when a longer frame

length is used, as depicted in Figure 5.10. Regarding to the second harmonic

all methods except the ESPRIT, MUSIC, and Capon perform better when

the frame length L2 is adopted. Using L2 in the third harmonic, all meth-

ods’ accuracy drops except the Daniell method. In the latter, the accuracy

increases.

Table 5.7: Maximum correlation-coefficient for various algorithms (Data 1,
L2)

Algorithm 60Hz 120Hz 180Hz
STFT 0.9916 0.992 0.9964
Welch 0.9964 0.992 0.9965
Blackman-Tukey 0.9933 0.992 0.9967
Daniell 0.9926 0.9915 0.9967
Capon 0.995 0.9916 0.9953
ESPRIT 0.9953 0.9916 0.9953
MUSIC 0.9953 0.9917 0.9953

Table 5.8: Minimum standard deviation of error for various algorithms
(Data 1, L2)

Algorithm 60Hz 120Hz 180Hz
STFT 2.388 · 10−3 2.317 · 10−3 1.572 · 10−3

Welch 1.564 · 10−3 2.317 · 10−3 1.546 · 10−3

Blackman-Tukey 2.133 · 10−3 2.317 · 10−3 1.508 · 10−3

Daniell 2.238 · 10−3 2.389 · 10−3 1.151 · 10−3

Capon 1.851 · 10−3 3.007 · 10−3 1.809 · 10−3

ESPRIT 1.793 · 10−3 3.007 · 10−3 1.804 · 10−3

MUSIC 1.793 · 10−3 3.007 · 10−3 1.795 · 10−3
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Figure 5.9: Comparison of Capon method for frame lengths L1 and L2.

Figure 5.10: Comparison of STFT method for frame lengths L1 and L2.
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5.2 Data 2 results

In this section, the results of all ENF extraction methods applied to Data 2

are presented for both frame lengths, L1 and L2. First, we proceed by demon-

strating the extracted ENF from the second harmonic against the reference

one. The second harmonic of ENF is estimated by various spectral analysis

methods. Next, the second harmonic is scaled to 60Hz in every case. The

ENF estimated by the STFT is shown in Figure 5.11. The ENF estimated

by the ESPRIT method is shown in Figure 5.12. The ENF estimated by

the Capon method is depicted in Figure 5.13. It is worth mentioning that

MUSIC yields similar results to ESPRIT for both ENF contour appearance

and matching accuracy. For illustration purposes multiple ENF contours are

shifted by 0.05Hz to allow comparisons. As is demonstrated in all figures,

more interference is present in the extracted ENF signal from the speech

recording than that from Data 1.

Figure 5.11: Extracted ENF signal against the reference one for the STFT
method applied to Data 2 for frame length L1. The extracted signal is shifted
by 0.05Hz for illustration purposes.
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Figure 5.12: Extracted ENF signal against the reference one for the ESPRIT
method applied to Data 2 for frame length L1. The extracted signal is shifted
by 0.05Hz for illustration purposes.

Figure 5.13: Extracted ENF signal against the reference one for the Capon
method applied to Data 2 for frame length L1. The extracted signal is shifted
by 0.05Hz for illustration purposes.
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For illustration purposes, the ENF contours estimated from the Data 2

second harmonic by various estimation methods are overlaid in Figure 5.14,

when L = L1. The second harmonic is down-shifted to 60Hz and the various

ENF contours are shown with increment of 0.05Hz. MUSIC and Welch

methods yield similar ENF contours to ESPRIT and Capon, respectively.

Figure 5.14: Extracted ENF signal of all methods against reference database
for Data 2 and frame parameters L1.

Apart from the standard deviation of errors, an interesting insight to

the differences between the extracted ENF signal and the reference one is

shown in Figure 5.15 and Figure 5.16. Absolute ENF estimation errors from

the speech signal are shown to visually demonstrate the performance of the

STFT and the ESPRIT.
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Figure 5.15: Absolute errors between the ENF estimated from Data 2 and
the reference ENF, when the STFT method with frame length L1 is applied
to the band-pass filtered signal around the second harmonic.

Figure 5.16: Absolute errors between the ENF estimated from Data 2 and the
reference ENF, when the ESPRIT method with frame length L1 is applied
to the band-pass filtered signal around the second harmonic.
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An improvement in the extracted ENF signal is achieved by the ESPRIT

method when longer frame length was used, as depicted in Figure 5.17.

Figure 5.17: Comparison of the ESPRIT method for frame lengths L1 and
L2 applied to Data 2.

In the speech recording, the first and third harmonics of the ENF are

too weak [6]. Accordingly, we confine ourselves to the second harmonic

(120Hz). Tables 5.9 and 5.10 summarize the maximum correlation coef-

ficient and the minimum standard deviation of error, respectively. It is seen

that the ESPRIT, MUSIC and Capon method yield more accurate results

than the periodogram-based methods with respect to maximum correlation

coefficient. The maximum correlation coefficient for ESPRIT reported here

is 0.9318, while 0.8446 was reported in [6] for the same length L1. The same

ordering of ENF extraction methods is observed when a longer frame length

L2 is employed. Periodogram-based methods yield a maximum correlation

coefficient slightly less than the ESPRIT, MUSIC and Capon methods. How-

ever, they are ranked top with respect to the minimum standard deviation of

error. In Data 2, the application of L2 frame length yields an improvement

in accuracy for all methods with respect to both correlation-coefficient and

minimum standard deviation of error.
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Table 5.9: Maximum correlation coefficient for various algorithms for Data 2
and two frame lengths L1 and L2

Algorithm 120Hz (L1) 120Hz (L2)
STFT 0.9238 0.9332
Welch 0.9179 0.9328
Blackman-Tukey 0.9238 0.9332
Daniell 0.9176 0.9311
Capon 0.9318 0.9444
ESPRIT 0.9318 0.9444
MUSIC 0.9318 0.9444

Table 5.10: Minimum standard deviation of error for various algorithms for
Data 2 and two frame lengths L1 and L2

Algorithm 120Hz (L1) 120Hz (L2)
STFT 7.052 · 10−3 6.623 · 10−3

Welch 7.313 · 10−3 6.641 · 10−3

Blackman-Tukey 7.052 · 10−3 6.623 · 10−3

Daniell 7.326 · 10−3 6.722 · 10−3

Capon 8.011 · 10−3 7.797 · 10−3

ESPRIT 8.012 · 10−3 7.797 · 10−3

MUSIC 8.011 · 10−3 7.797 · 10−3

5.3 Computational requirements

The algorithm used in ENF extraction must fulfill two requirements. First

and foremost, it has to be efficient in terms of accuracy in order to achieve the

best possible matching. The second requirement concerns the computational

cost of the method adopted. This is of high importance when an algorithm

is implemented. In the thesis, besides the study concerning the evaluation of

each algorithm in terms of accurately matching the extracted ENF signal to

the reference one, a systematic study is done in order to make clear how each

algorithm and raw signal filtering affects the computational requirements. In

Table 5.11, the computational time for Data 1 when L1 is used, is presented.

When the frame length L2 is adopted the computational time is listed in Table

5.12. In both cases, the Capon method is by far the most time consuming

with 1394.8667 sec for L1, while ESPRIT and MUSIC are the next more
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time consuming methods. STFT requires the least time (about 1.5 sec). BT,

Daniell and Welch are also very fast.

Increasing frame length to L2, the order of the most time consuming

algorithms remains the same as for L1. However, all algorithms require more

time now. A visual representation of ENF estimation accuracy measured with

respect to the correlation-coefficient and computational time requirements of

all methods applied to Data 1, using frame length L2, is shown in Figure

5.18. A logarithmic scale is used on the time axis.

Table 5.11: Computational cost of each algorithm in seconds (Data 1, L1)

Algorithm 60Hz 120Hz 180Hz
STFT 1.6108 1.7965 1.8208
Welch 13.0709 14.3214 13.2014
Blackman-Tukey 5.4646 5.5289 4.7036
Daniell 2.7730 3.1489 13.2014
Capon 1394.8667 1389.0156 1346.8761
ESPRIT 76.7445 76.4896 76.3824
MUSIC 76.6992 76.5861 76.7358

Table 5.12: Computational cost of each algorithm in seconds (Data 1, L2)

Algorithm 60Hz 120Hz 180Hz
STFT 2.8796 2.7099 2.7380
Welch 42.7841 43.5214 42.7939
Blackman-Tukey 8.2119 7.5159 7.7323
Daniell 5.8448 5.3647 5.3801
Capon 2752.9680 2807.0183 2770.0832
ESPRIT 157.7661 153.9399 161.4595
MUSIC 158.4205 154.7654 155.3864

For Data 2, there is a significant increase in computational time required

by the Welch algorithm, which is even bigger than that of the Capon method.

From the inspection of Table 5.13, one sees that for both L1 and L2, the Welch

method requires a huge amount of time, which makes it completely inefficient

for ENF extraction, since it requires approximately 23902 sec. This is due to

segment length employed in Welch algorithm as stated in Section 4.2. The

second most time consuming method is the Capon method, which requires

about 2248 sec. The rest of the methods seem to be more efficient in terms
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of the computational time. The STFT needs the least time (about 2.96 sec)

along with the Daniell and BT methods. When the frame length L2 is used,

the time is slightly increased in all cases, as expected. Except the Welch and

the Capon methods, the rest fulfill the requirements for fast and accurate

ENF extraction.

Table 5.13: Computational cost of each algorithm in seconds (Data 2, L1

and L2)

Algorithm 120Hz (L1) 120Hz (L2)
STFT 2.9648 3.2584
Welch 23902.8156 27320.0221
Blackman-Tukey 6.4617 9.3799
Daniell 4.8143 7.0967
Capon 2248.7507 3424.2689
ESPRIT 126.2766 208.2021
MUSIC 125.1108 198.7045

Figure 5.18: Correlation-coefficient for the first harmonic ENF extraction
versus computational requirements of the various mathods applied to Data 1
using frame length L2.
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Chapter 6

Conclusion

Digital audio authentication requires high accuracy in ENF extraction to en-

sure exact time/location estimation. Several frequency estimation methods

have been tested on a frame-based approach by dividing the entire signal into

consecutive overlapping frames. Two datasets have been employed, namely,

a signal recorded from the power mains and a speech recording. In the former

dataset, a high SNR is present and accurate ENF estimation can be achieved

from all the three harmonics. In the latter dataset, strong interferences are

present. It has been demonstrated by experiments that if the raw datasets are

filtered by a properly designed band-pass filter, then either non-parametric

or parametric techniques for spectral estimation provide an accurate estima-

tion of the ENF. The aforementioned interferences introduce challenges to

ENF estimation. Exploiting their sparse nature in the formulation of ENF

estimation could be a topic of future research. By applying longer frames it

has been shown that one can reduce the interferences and achieve an accurate

ENF. This longer frame setup fits better the speech dataset, where strong

interferences are known to exist. The computational time requirements are

also studied for both datasets, because computational speed is of high impor-

tance as well. As expected, when longer frames are employed, computational

time increases. This is also noticed, when a higher filter order is used for

band-pass filtering the raw signal. When computational time is considered,

the STFT and Daniell are found to be the fastest methods, offering both
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accuracy and low computational time. From the point of view of compu-

tational time, the Welch and the Capon methods are found to be the most

time consuming ones.
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